天外来客-奇妙无穷的数
我们在前面讲述过毕达哥拉斯的故事。在西方数学史上,他还以发现毕达哥拉斯定理而闻名。
毕达哥拉斯定理的内容是:在直角三角形里,两条直角边的平方和,一定等于斜边的平方。这是几何学里一个非常重要的定理。相传毕达哥拉斯发现这个定理以后,高兴得不得了,宰了100头牛大肆庆贺了许多天。
说来有趣,正是这个让他欣喜若狂的定理,后来又使他狼狈万分,几乎无地自容。
毕达哥拉斯有一句名言,叫做“万物皆数”。他把数的概念神秘化了,错误地认为:宇宙间的一切现象,都可以归结为整数或者整数的比;除此之外,就不再有别的什么东西了。
问题就出在这里。有一天,毕达哥拉斯的一个学生,在世界上找到了一种既不是整数,又不是整数之比的怪东西。
这个学生叫希伯斯,他研究了一个边长为1的正方形,想知道对角线的长度是多少。
从图上看得很清楚,对角线与正方形的两条边组成了一个直角三角形。根据毕达哥拉斯定理,希伯斯算出对角线的长度等于2。可是,2既不是整数,也不是整数的比。他惶惑极了:根据老师的看法,2应该是世界上根本不存在的东西呀?
希伯斯把这件事告诉了老师。毕达哥拉斯惊骇极了,他做梦也没想到,自己最为得意的一项发明,竟招来一位神秘的“天外来客”。
毕达哥拉斯无法解释这种怪现象,又不敢承认2是一种新的数,因为他的全部“宇宙”理论,都奠基在整数的基础上。他下令封锁消息,不准希伯斯再谈论2,并且警告说,不要忘记了入学时立下的誓言。
原来,毕达哥拉斯学派是一个非常著名的科学会社,也是一个非常神秘的宗教团体。每个加入学派的人都得宣誓,不将学派里发生的事情告诉给外人。谁要是违背了这个规矩,任他逃到天涯海角,也很难逃脱无情的惩罚。
希伯斯很不服气。他想,不承认2是数,岂不等于是说正方形的对角线没有长度吗?简直是睁着眼睛说瞎话!为了坚持真理,捍卫真理,希伯斯将自己的发现传扬了开去。
毕达哥拉斯恼羞成怒,给希伯斯罗织了一个“叛逆”的罪名,决定严加“惩罚”。希伯斯听到风声后连夜逃走了,他东躲西藏,最后逃上了一艘海船离开了希腊,没想到在茫茫大海上,还是遇到了毕达哥拉斯派来追他的人……
真理是打不倒的。毕达哥拉斯能够“惩罚”希伯斯,却“惩罚”不了2。这位神秘的“天外来客”不但逍遥法外,反而引来更多的同伴:3、5、7……频繁地出现在各类数学问题中,使得古希腊数学家伤透了脑筋……
直到最近几百年,数学家们才弄清楚,2确实不是整数,也不是分数,而是一种新的数,叫做无理数。
无理数也就是无限不循环的小数。2是人类最先认识的一个无理数。1971年10月,一位美国数学家在电子计算机上运算了47.5个小时,求出了2小数点后的100082位数,得到的仍然是个近似值。分析这样一个精确的近似值,人们仍然看不到2的小数部分有一丝循环的迹象。
毕达哥拉斯扮演了一个可悲的角色。他不知道,无理数概念的产生,是数学史上一个重大的发现,也是整个毕达哥拉斯学派的光荣。