小数的经历-奇妙无穷的数

时间:2024-11-12 01:17:06关键词:小数,经历,奇妙无穷的数

小数的经历-奇妙无穷的数

有了小数之后,记数就更方便了。如圆周率近似值3.1416,若用分数表示,就得写成39271250,很麻烦,何况还有更多位的小数和更复杂的运算。有位著名的美国数学史家说:“近代计算的奇迹这般的动力来自三项发明,印度记数法、十进分数和对数。”这里所说的十进分数就是指小数。

小数的经历-奇妙无穷的数

在西方,一般认为小数是比利时数学家斯蒂文发明的。但最早使用现代意义的小数点的是德国数学家克拉维斯,他在1593年使用了小数点。但是直到19世纪末,小数的记号仍很混乱。就是在现代,小数点也分为欧洲大陆派和英美派两种记法,前者采用逗号“,”,后者则坚持用圆点“.”。

实际上,早在斯蒂文发明小数点之前很久,中国、印度和中亚就已经使用十进分数了,也即小数。

公元3世纪,我国魏晋时期刘徽的《九章算术注》中,有三处运用了十进分数的思想。到了南北朝时期,在历法中大量使用了下列记法:

十一万八千二百九十六二十五(11896.25)

小数的经历-奇妙无穷的数

八十九三(98.3)

百一十九119.12

这种写法和西方直到19世纪仍在流行的小数记法2.5或2.5,几乎是完全相同的。

到了宋元时期,更有下列记法:

(324506,1247年)

小数的经历-奇妙无穷的数

(0.25,1247年)

(-0.5,1248年)

这些记法都远远胜过三百多年后斯蒂文的记法。

中亚的阿尔卡西是世界上除中国人之外第一个应用十进分数的。他的用法体现在他1427年的《算术之钥》一书中。

不论在东方还是西方,对小数的认识都经过了几百年甚至上千年的演变。