高温高压的世界-太阳为我们工作
太阳的能量由核反应产生。在什么情况下才会出现核反应呢?地球大气也有大量的氢,但它们绝不会聚变成氦。只有在上千万度的高温状态,氢原子才会完全电离并获得足够的能量来克服核子间的排斥力,实现核反应。另外,物质要高度密集,才能使核反应持续进行下去。那么,这些条件在太阳内部是否具备呢?
我们观测太阳只能看到它的大气,而整个太阳内部对我们的眼睛和仪器来说都是看不见、摸不着,可说是讳莫如深的“禁区”。除掉近年来太阳的中微子这个行踪诡密的“特殊使节”可能传递一点直接信息外,我们对太阳内部只能用理论计算加以研究。半个世纪来,经过天文学家的努力钻研,已经创立比较完整的恒星内部结构理论。
太阳是一大团气体,它的结构主要由两种力量决定。一个是太阳的重力,即日心引力,它使太阳物质收缩。同时,气体有膨胀和逃逸的倾向。这两种相反的力大致处于平衡状态,结果使太阳成为一个基本稳定的气体球。让我们先考虑太阳的表面层——光球。那里的温度和密度早已从直接的观测定出了。如果对表面层下面的一点选择一个温度,然后计算在什么密度下这一点的气体物质才能处于平衡态,既不被上面的气层压塌,也不因膨胀而冲到外面去。接着对第三点也取某个温度,按同样方法定出它的密度。如此逐点内推,直抵太阳核心。当然,我们所选的一系列温度是否正确,还须加以鉴定。为此,我们要求由各层密度的计算结果推出的太阳总质量,应与观测结果吻合。另外,太阳的平均密度也是—个判据。实际计算甚为复杂,因为还须考虑化学成份、不透明度、能量传输方式等很多因素。经过大量计算,已经建立太阳的结构模型。不同的研究者得到的结果有些差异。大致说来,太阳核心的温度是1500万~2000万度,物质密度为100~130克/厘米3。至于太阳内部温度和密度随深度的分布,温度和密度都随与太阳中心距离的增加而迅速下降,所以核反应发生的区域很小。这个区域的半径R≤0.15R⊙,这里R①是太阳的半径。我们可以把这一区域叫做太阳的心脏。
将近2000万度的极高温度和超过地面大气压力3000多亿倍的巨额重载!这些都远远超出我们日常生活的经验。在这种骇人听闻的高温高压的世界里,那里的物质是处于所谓高温等离子体状态。本来在低温情况下,原子核把电子牢牢吸住,使它们循一定轨道绕原子核旋转。但是在高温状态,电子具有极高的动能,它们挣脱了原子核羁绊,取得了“独立”地位,成为飞快奔驰的自由电子。不仅只有一个电子的氢,甚至有几十个电子的金属原子,也都纷纷电离了。在正常情况下,原子的直径约为10-8厘米,但在高度电离的状态,丧失了全部或大部分电子的原子核就显得更微小了,直径不超过10-12厘米。原来是稠密的气体,现在变得稀疏了。不仅对太阳核心(密度约为102克/厘米3),甚至对白矮星(密度高达106克/厘米3),原子核还处于可以自由运动的状态。那么,究竟要达到多大的密度,原子核才能摩肩接踵,联成一片呢?答案是一个惊人的数字:1014/厘米3!要是我们一旦遇到这种物质,那怕只有针尖那样大一点,用巨型起重机也很难搬动它呢!