解方程(5篇)

时间:2019-06-08 08:08:08关键词:解方程

解方程第1篇(全文831字)

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:

找出题中的等量关系,并根据等量关系列出方程。

教学过程:

一创设情景,提出目标

1:出示洪泽湖的图片——洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”

2、我们结合这幅图片来了解警戒水位、今日水位,及其关系。

3、提出学习目标:同学们能解决这个问题吗?你还想知道什么?

(1)根据已知条件,找出题目中的数量关系。

(2)根据具体找出的数量关系列出方程,并正确解方程。

【设计意图:从生活实例激发学生的学习兴趣。简洁提出目标让学生明白知识点。】

二展示成果,激发冲突

1、学生独立解决例3、例4,小组内个人展示。

小组内展示内容主要有例3、例4:

(1)根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?(警戒水位、今日水位、超出部分)

(2)它们之间有哪些数量关系呢?

2、全班展示

(1)第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的:x+0.64=14.14

引导质疑:还有不同的方法列方程解吗?(以此引出第二、第三种方法:14.14﹣x=0.64与14.14﹣0.64=x)

学生:第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的。

学生:第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

师:在解决问题中,我们是怎样来列方程的?(将未知数设为x,再根据题中的等量关系列出方程。)

(2)展示例4,其他学生自由提出疑问,教师辅导解释。

【设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。】

三拓展延伸

1:p61页“做一做”的题目

2:独立完成练习十一中的第6、8、9题。

【设计意图:通过联系,加强学生对知识的系统化,及时有效地巩固知识】。

解方程(5篇)

解方程第2篇(全文1045字)

§5.2(1)

教学目标

1、学会利用等式性质1;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1及移项法则;

教学难点:利用等式性质1来解释方程的变形。

教学准备

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

①5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

①2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、利用等式性质1:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意:解题格式。

例15x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=55x=7+4x

x=5-25x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变

3、移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:①格式:时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②与计算不同:不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

解方程(5篇)

解方程第3篇(全文1367字)

一、教材分析

教材的地位和作用

《等式的性质的应用》是义务教育课程标准实验教科书数学七年级上册“3.1.2”的第二节课。学生在学习了等式的性质的基础上,对知识的拓展,使等式的性质与解方程结合起来,它有助于引导学生利用等式的性质研究方程的解法。在本节的教学中,主要为解方程的“合并同类项”“移项”“除以未知数的系数”等知识做好铺垫的。

二、教学目标分析

学情分析学生已经掌握了一步计算的方程,不过他们利用是四则运算各部分间的关系来解方程的。学习等式的性质,是对解方程思路的一种转变。并且会用等式的性质也能熟练的解简单的方程。

根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标。

知识与技能目标:

(1)熟练应用等式的性质解方程;

(2)学会观察、分析,使逻辑思维能力得到提高。

过程与方法目标:

通过自主预习、合作探究、小组交流方式让学生经历用等式的性质解方程的探究过程,并体验用等式的性质解方程的新颖与知识的应用过程。

情感态度与价值观目标:

培养学生实事求是的学习态度,渗透与他人交流、合作的意识,并能学会用联系的观点看待问题。

教学重难点分析

教学重点:运用等式的性质

教学难点:运用等式的性质解方程

本课在设计上以低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生灵活性,使他们获得成功的满足感。并通过逐步深入的课堂练习,师生互动、讲练结合,从而突出重点、突破教学难点。

三、教学方法与教学策略

课程标准指出:学生掌握知识有一个过程,要在学生初步理解的基础上,通过必要的练习来加深理解,逐步掌握。同时,通过练习,把知识转化为能力。本节课主要以自主─合作─探究,归纳─总结─应用为主线,“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,并通过“三学小组”活动来实施。

以小组为单位,由小组长组织在小组内互学后进行小展示,各小组在小组内展示结束后,由组内推荐在班内进行大展示,组间质疑、指导及互评,加深学生对所学知识的理解。

整个学习过程注重激发学生的思维,使他们积极主动地参与学习活动,达到明“理”知“法”。并且在设计练习时注重以充实、有效的练习活动为载体,让学生探究掌握学习内容,体验领悟数学的思想和方法,发展学生学习数学的积极情感。

四、教学过程分析

1.创设情境,独立自学

(设计意图:以简单的方程入手,让学生用熟悉的解题方法引入新课,有效激起对知识的回顾,初步感知等式的性质与方程的联系,有效调动学生的学习兴趣。)

2、自主探索,合作互学

学生自学课本82页内容,以小组为单位完成以下问题:

(设计意图:在学生充分思考和讨论后,每个小组派出代表汇报结果,再通过倾听其他小组意见的发现自己的不足,在此过程中,教师要倾听,给予敢于表达自己观点的学生予以鼓励性评价。通过上述活动,逐步学会运用等式性质来解方程能力。)

3、尝试练习,展示竞学

(设计意图:尝试练习是学生学习知识后,对知识初步应用的体验,在尝试学习中,能使每个学生都积极动脑思考,认真自学,挖掘每个学生的潜能。在尝试学习中,学生的练习或多或少有一些错误、疑惑,甚至是错误,此时根据学生的难点进行点拔,会起到很好作用。)

4、范例解析,精讲导学

(设计意图:通过这一步学习,进一步检测学习对知识的应用情况。)

5、小结评学

6、检测固学

五、评价分析

本节内容并不多,通过对等式的性质的应用,体验了与方程的关系,加深对已经学习过的内容的认识,并且初步感知对等式的性质的应用的优越性。本节课的设计遵循学生的认知规律,让学生通过的动口、动脑、动手的主动探究,经历知识的产生、发展、形成与应用的过程,重在培养学生观察、分析、抽象概括的思维能力

本节课体现了学生主体、教师主导的地位,多数时间让学生自己去探究,当学生敢于表述自己的观点时,及时予以鼓励性评价。

解方程(5篇)

解方程第4篇(全文1605字)

“自学互帮导学法”课堂教学设计

课题

解方程

课时

1课时

课型

新授课

修改意见

教学目标

1、知道解方程的意义和基本思路。

2、会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。

3、会对具体方程的解法提出自己解答的方案,并能与同学交流。

4、会独立地解答一、二步方程。

教学重点

运用数量关系式或等式的基本性质对具体方程的解法提出自己解答的方案

教学难点

独立地解答一、二步方程

学情分析

解方程需要对数量关系式或等式的基本性质进行具体的分析,因此教学重点落在用数量关系式或等式的基本性质的理解上。

学法指导

自学互帮,合作学习

教学过程

教学内容

教师活动

学生活动

效果预测(可能出现的问题)

补救措施

修改意见

一、看卡片写等式

1.20加上x等于308

2.a等于2b减去21

3.12的3倍等于36.

4.y减去8等于13

师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。

二、走进新课

1汇集问题,寻找出路

2解决问题,形成方法

3类比推广,深化探究。

三、练习巩固

四、回顾总结

师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。

这些等式,哪几个是方程?

师:谁能够很快猜出方程里未知数的答案?

师:看到刚才同学们猜得那么有趣,澳大利亚特有的动物考拉也来凑热闹。(

课件出示例1)你看它们多可爱啊!

师:请你仔细观察,你发现了哪些数学信息?

师:大家能根据数学信息说出等量关系吗?

师:我们根据题意,知道4只考拉重12kg,设每只考拉为xkg,可以得到方程4x=12。(教师板书方程)

师:大家想一想,方程4x=12的解是多少呢?

师:大家的想法都很好,那你们把它写下来。

师:从大家的书写中看出,三位同学都求出了方程的解是3。在数学上,求出方程的解的过程叫做解方程。(老师板书:求出方程的解的过程叫做解方程)

师:要把解方程写出来,还有一定的格式,否则,别人就可能看不懂。先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子

师:通过学习,和大家一起了解了一个新的知识:解方程。(板书:解方程)要判断方程的结果写对没有,应该怎么做呢?

生:验算。

师:好!下面,我出一个方程,你们马上写出求解的过程和验算的过程,不会的可以问问同学和老师。

出示:20+x=30。

师:前一段,我们写出了解一步方程的过程,那两步方程呢?四人小组一起试着写一写解方程“3y-8=13”的全过程。一会儿要请同学上来讲给大家听,看哪一组的说得清楚,写得规范。

师:数学上的每一步都很重要。我们必须写清楚,否则别人看不懂就会误事儿!刚才大家写的过程,归纳起来很简单:就是解方程的时候,用数量关系或者等式的性质思考,再加上验算,那肯定不会有错的。

师:你能解下面两个方程吗?并验算。

(出示:18+6x=30,4n-25×4=15)

完成课堂活动

今天,我们学习了解方程,大家一起来说说,从这节课中你学到了什么?

大家的总结很全面,从大家的总结中看出你们这节课学得非常认真,我们学数学最重要的是学习思考方法,并运用这些方法来解决问题,明天,我们将学习用方程来解决生活中遇到的问题,希望大家继续努力。

20+x=308

a=2b-21

12×3=36

y-8=13

生:只是有些式子跟以前学的的不一样

生:我会猜方程“20+x=30”的答案,x=10。

生:老师,我还知道方程“3y-8=13”的解,y是7。三七二十一,减8是13。

生:我发现图上有4只考拉,每只重xkg,他们一共重12kg。

生:4x=12。

生1:我认为方程4x=12的解是3,因为三四十二,所以x=3。

生2:我也认为方程4x=12的解是3,因为x是12的因数,因数=积÷另一个因数,12÷4=3。

生3:我也认为解是3。因为4x就是4乘x,利用等式的性质,在等式两边同时除以4,就可以得到x=3。

生1:4x=12

=12÷4

=3

生2:4x=12

x=12÷4

x=3

生3:4x=12

解:x=12÷4

x=3

学生讨论交流看法

学生解方程

(1)组:解3y-8=13

3y=13+8

3y=21

y=7

(2)组:解3y-8=13

3y-8-8=13-8

13y-16=7

验算3×7-8=21

(3)、(4)组:

解3y-8=13

3y-8+8=13+8

3y=21

3y÷3=21÷3y=7

验算3×7-8=21

生独立完成

生:我学会了解方程的书写格式。

生:我学会了解方程的思考方法。

生:我学会了方程的验算。

只是有些同学的式子跟上面展示的不一样

……

生:我知道8a=2b-21的解是,是……

虽然很多同学能计算出方程的解,但格式不对

学生很快完成了,书写有些不符合要求

教师巡视指导,发现问题并纠正。

不一样好啊!要是我们全班同学都长得一样,老师不是叫不出大家的名字了吗?

……

师:我也觉得这个方程的答案挺难猜。这样吧,我们留着以后来研究。

教师巡视指导

刚才大家用数量关系式或等式的性质还原了式子中的一些数,得到了方程的解。这个解的过程我们就叫做解方程。写过程的格式还要注意:第一,先提行写下一个“解”字;第二,尽量使等号对齐,两边写式子;第三,可以利用数量关系式解答,也可以运用的性质进行计算,要特别注意的是:等式两边要同加、同减或同乘、同除。

板书设计

解方程

求出方程的解的过程叫做解方程

参考书目及

推荐资料

西师版五年级下数学教科书及教学参考书

教学反思

解方程第5篇(全文1633字)

苏教版小学五年级解方程的方法与人教版老教材解方程的方法完全不同,老教材利用四则计算各部分之间的关系来解方程,即一个加数等于和减去另一个加数,被减数等于差加减数,减数等于被减数减去差,一个因数等于积除以另一个因数,被除数等于商乘除数,除数等于被除数除以商。而苏教版教材是在学习“方程的意义”之后,安排一个“等式基本性质”内容的学习,将其作为导出解方程方法的认知基础。依据等式的基本性质即“在方程两边同时加上或减去、乘上或除以一个不为0的数,等式不变”从而求出方程的解。而且在教材中又特意回避了减数和除数是未知数的方程。有些教师因为以往的经验在脑海中根深蒂固,一时难以适应新方法。因此在实际教学中依然延用旧方法,而且认为在实际运用中学生掌握起来也比较容易,也都喜欢用这种方法来解题。另外,如果学生在做题中一旦遇到了以减数或除数为未知数的方程,就不知该如何下手了。确实,上面提到的几点,在我们实际教学中是存在。那么,现在我们究竟该如何解方程呢?

针对如何解方程,我们年级组数学老师认真贯彻落实新课标理念,坚定不移地按照新课标要求,为了学生的长远发展,根据教学经验,我们从以下三个方面说明用等式基本性质解方程的优越性:

一、解题思路符合学生的特点和认知规律

用等式基本性质解题,思路更加清晰明了。教材首先编排了方程的意义,通过天平理解左右平衡。而在方程的意义和解方程中间插入了一个做天平的游戏,这个游戏也就是后面学习解方程的方法,应该说这个游戏很直观,四次游戏分别代表了在方程左右两边加、减、乘、除(0除外)相同的一个数,方程的左右两边仍然相等。在学习解方程的过程中每一步也就是应用了这四次游戏的方法来求出未知数的值。紧紧抓住方程的本质特征--“等式的基本性质”,把各种方程整合为同一类型的问题,解题思路显得异常简单。那就是:只要在等式两边同时进行相同的运算,使方程的一边只留下未知数,另一边只剩下已知数,即可求出方程的解。旧教材要记住并灵活运用六种关系式解方程,而新教材只需运用一种性质解方程,显而易见,后者较之前者更容易被理解并应用。虽然,有些老师在教学中尝试了让学生用两种方法解题后,认为学生喜欢用加减或乘除运算之间的关系来解方程并容易掌握,这实际上是一种误解,学生可能是喜欢用算术法解方程,但是究其原因,往往是因为书写上的一些便利就对其心有所属,这也是对新方法的一些偏见,需老师在实际教学中正确引导。

二、有利于学生的长远发展

在新一轮课程改革中,为了学生的可持续发展,将等式性质作为小学解方程的依据,使中小学解方程的思路得到基本统一,解释趋于一致。教方程的目的一是为了针对小学应用题教学的难点,旨在化难为易,它常常可以化逆向思维为顺向思维,提高了学生分析问题、解决问题的能力;再次为了加强中小学数学教学的衔接,为中学系统地学习方程的知识做铺垫。因此,为充分体现解方程的地位和作用,解法思路的改变就是必然的,这也是为了学生的可持续发展,为学生的终身学习服务。

三、对如何处理较特殊的方程问题上,新课程标准也有要求。

《数学课程标准》要求学生掌握简单方程就行了,所以教材中不再出现形如a-x=b或a÷x=b这两种类型的方程。这是因为小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及其算理解释比较麻烦;至于形如a÷x=b的方程,本质上是分式方程,依据等式的基本性质解需要先去分母,同样不适合在小学阶段学习。解a-x=b或a÷x=b这两种类型的方程是中学数学的学习内容。如果有了负数的计算及分数的计算等相关的知识储备,用“等式的基本性质”解此类型的方程将易如反掌。即使学生在解题时出现类似的方程,如8-x=5,我们根据等式的基本性质完全可以解,只要告诉学生在方程的两边同时加上“x”,使方程成为8=5+x,即5+x=8,学生就会解了。其实,我们也无需在这类方程上过多纠缠,它毕竟超出了我们现在的教学目标,这样的问题随着学生数学知识的丰富,以及对等式性质有深入了解后,会很轻松地解决。

由此看来,解方程的内容调整后,利用等式的基本性质解方程的思路更为统一,与初中的联系更为紧密,优越性也就更为明显了。显然,课标是我们每个教师教学的准绳,我们要深刻领悟课标的教学理念,深入钻研教材,培养学生综合运用所学知识灵活解决实际问题的能力,实现课标中所说的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”真正做到:一切为了学生,为了学生的一切。

【相关阅读】