植树问题教学设计(8篇)

时间:2023-08-27 02:59:06关键词:植树,问题,教学,设计

植树问题教学设计第1篇(全文357字)

学习目标:

1、学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

2、使学生经历和体验复杂问题简单化的解题策略和方法。

3、让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

学习过程:

一、知识铺垫

马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

1、你都知道了些什么?

2、一共要栽多少棵树?你是怎样想的。

二、自主探究

大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

1、你都知道了。

2、你认为一共要栽多少棵树?你会计算吗?试一试吧!

总结

植树问题

总长()=()

两端栽:棵数=()+1

一端栽:棵数=()

两端不栽:棵数=()-1

三、课堂达标

1、小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

2、一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

3、一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

植树问题教学设计(8篇)

植树问题教学设计第2篇(全文638字)

教学目标:

1、探索并掌握一位数除两位数的口算方法,并能正确地进行计算,提倡算法的多样化。

2、结合具体情境,用除法知识解决简单的实际问题,感受数学在实际生活中的运用。

教学重点:

探索并掌握一位数除两位数的口算方法,并能正确地进行计算,提倡算法的多样化。

教学难点:

结合具体情境,用除法知识解决简单的实际问题,感受数学在实际生活中的运用。

教学用具:

挂图、幻灯、小黑板。

教学设计:

一、情境导入:

同学们,秋天到了。秋天师播种的季节,为了今后我们的生活处处充满绿色,今天我们就要去进行植树活动。

探索新知

1、出示挂图,观察图片,你能提出什么数学问题?

2、解决“每组3人,可以分多少组?”可以怎样列式,并说说你是怎样想的?

2、学生列出“36÷3”的算式后,引导学生思考怎么计算。

3、全班交流

小组选代表发言,得出36÷3=12中的36表示一共有36人,3表示每组有三人,12表示可以分12组。学生得出计算方法:

1、因为12×3=36,所以36÷3=12。

2、30÷3=10,6÷3=2,10+2=12。

3、因为12+12+12=36,所以36÷3=12……

对于学生的计算方法,只要正确,教师都要进行表扬和鼓励,准许学生用自己喜欢的方法计算。

4、优化算法。你认为哪种方法最好?为什么?

师小结:同学们,这几种方法都是你们自己的想法,各有各的理由,你喜欢哪种就用哪种。

拓展应用

1、46÷284÷4630÷996÷3

66÷3100÷5720÷848÷2

⑴、一双鞋子的价钱是一副手套的几倍?

⑵、一双鞋子的价钱比一副手套贵多少倍?

⑶、你还能提出哪些数学问题?

四、总结:

今天我们学习了一位数除两位数的除法计算,可以先用除数去除被除数中整十的部分,再去除被除数的个位数,然后把两次除得的结果合起来。如果有道理,也可以用你喜欢的其他方法来计算。生活中有很多问题的解决都要用到我们今天学到的知识,同学们要做一个有心人,下课后,我们可以试一试用今天学到的知识还能解决哪些生活中的实际问题。

五、作业:

作业本上的作业。

植树问题教学设计第3篇(全文1068字)

一、教材内容分析

1、人教版四年级下册第8单元书119页

二、教学目标(知识与技能、过程与方法、情感态度与价值观)

1、进一步理解和掌握在直线上植树问题的解题规律。

2、会根据实际问题,灵活选择方法进行解答。

3、经历解决植树问题的过程,体验比较、区别学习方法。

4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。

三、学习者特征分析

学生通过生活中的简单事例,初步体会解决植树问题的思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

四、教学策略选择与设计

认真观察分析,运用规律解决问题

五、教学环境及资源准备

投影仪

六、教学过程

教学过程教师活动预设学生行为设计意图及资源准备

一、复习回顾

(1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:

①两端都要栽:植树棵树=间隔数+1

②两端都不栽:植树棵数=间隔数-1

③只栽一端:植树棵数=间隔数学生在小组中议一议。相互交流。

二、指导练习

(1)教材练习二十第1题。

①学生读题:理解题意。

②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?

③大钟敲12下,需要多长时间呢?

大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。

组织学生读题,理解题意。

(2)教材练习二十第3题

教师:从王村到李村之间设电线杆,会有几种情况?

学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。

a.16-1=15200×15=3000(米)

b.16+1=17200×17=3400(米)

c.200×16=3200(米)

教材第119页思考题。

教材练习二十第4题。

①学生读题,理解题意。

②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?

教师:你发现了什么?

教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)

教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。

所以排名是:

1号2号3号4名

第3名第4名第2名第1名

学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。

学生独立思考,并解答。教师指名汇报,然后集体订正。

组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:

a.两端都设有电线杆。

b.两端都不设电线杆。

c.只在一端设电线杆。

学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名

三、应用练习

(1)一度长180米的大桥两侧,每隔30米安装一盏路灯。

①两端要安装,需路灯几盏?

②两端不安装,需路灯几盏?

(2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多学生独立练习,然后小组交流。

指2名学生板演,再集体订正。

学生读题,理解题意。

小组合作讨论,交流解答。

四、总结

通过这节课的练习,你又有哪些收获?

板书设计:植树问题

植树问题教学设计(8篇)

植树问题教学设计第4篇(全文1508字)

教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

教学重难点:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

教学、具准备:

课件、表格、尺子等。

教学过程:

一、教学间隔

1.教学间隔的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

2.引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、自主探究找出规律

1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

预设:学生可能大多数对得到20棵。

师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

根据学生的回答,师填写表格:

总长(米)

20

全班观察表格寻找规律。

师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

师:对得到的这个规律有没有不同意见?

三、巩固练习

师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

(1)基础练习。

师:请看题目,谁愿意来说一说?

A1.在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

A2.如果是每隔10米栽一棵呢?(口答)

B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

(2)拓展练习。

师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

课件出示解放碑的大钟及题目。

解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

师:请同学们独立的在练习本上完成。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

四、数学文化

介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

五、全课总结

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教学设计第5篇(全文1574字)

一、教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角”第117—118页。

二、教材目标:

1.通过生活中的事例,知道“植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。

三、教学重点

引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

四、教学难点

理解间隔数与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

五、教学准备

学习单、多媒体课件、小树和小路模型。

六、教学过程:

(一)问题导入:

出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

(二)探究新知:

1.队列问题:

出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

并出示课题。

2.植树问题:

(1)体会“化繁为简”思想:

问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

突出矛盾:数字太大,不易思考,引导学生转换较小的数。

明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

(2)设计三种植树方案:

引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

①学生活动,教师巡视。

②汇报、展示:

③小结:组织学生对不同方案进行命名,突出其主要特征。

教师板书:两端都种、只种一端、两端不种

(3)探究规律:

①求间隔数:

教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1”。

在没有植树的棵数时,探究间隔数与全长、间隔的关系。

组织学生独立思考,借助学具、线段图等形式探究规律

a:学生思考并摆学具或画线段或列算式。

b:汇报:

②探究间隔数与棵数的关系:

开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔米植一棵,一个需要棵树?

小组合作完成探究,活动要求:

1)自己选择适合的间隔长度,四人小组合作完成记录表。

2)小组选择一种植树方式进行探究。

3)可以借助摆学具、画线段、数手指或列算式的方式。

a:学生小组活动,教师巡视。

b:学生汇报发现规律,教师板书。

c:升华:

三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

d:应用:

老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

(三)巩固提升:

1.选一选:

下面每一题相当植树问题的哪一种情况?

(1)音乐中的“五线谱”()

(2)衣服上的纽扣()

(3)成语“一刀两断”()

(4)自鸣钟九点报时的钟声()

A.两端都种;B.只种一端;C.两端不种。

2.广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要秒。3.小法官:

(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。()

(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。()

4.学校一条大路的一边共插了20面彩旗。

(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

(四)课堂总结:

师:今天我们学习了什么?你有什么收获?

生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

教学反思

通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学设计(8篇)

植树问题教学设计第6篇(全文1633字)

教学内容:

《植树问题》

教学来源:

人教版小学数学教材第九册第七单元《植树问题》

教学对象:

五年级学生

备课人:

张金玲

基于标准:

数学广角的教学目标可概括为以下几点:

1、感悟重要的数学思想方法;

2、运用数学的思维方式进行思考,增强分析和解决问题的能力;

3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

教材分析:

《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

学习目标:

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

评价任务:

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单

【教学过程】:

一、导入新课

1、猜谜语,直观认识间隔

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)

同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)

你发现什么了吗?(生说)

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标

1、例题探究

说起植树问题我们就先从植树谈起吧。请看例题。

出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?

A、从题中你能知道哪些信息?谁来说一说?生说,师画。

它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

B、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)

方法2:1000÷5=200200+2=22(棵)

方法3:1000÷5=200200+1=21(棵)

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)

三、自主探究,发现规律

化繁为简探规律是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

植树问题教学设计第7篇(全文2443字)

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、探究新知。

(一)、创设情境,提出问题。

1、出示题目信息:一条新修的公路,全长1000米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表1000米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到1000米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。1000米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,1000米太长了,我们可以转化成20米栽几棵,从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o()=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:200表示什么意思?为什么要加1?(200表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!)

(4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。

小练笔:运动会上,在一条长200米的笔直跑道的一侧插彩旗(两端都插),每隔10米插一面,一共要插多少面彩旗?

师:请大家默读题目,然后在练习本上独立完成。

三、学以致用。

1、同学们,数学就在我们身边!看,我们的《小苹果》舞蹈比赛中同样蕴含着植树问题的知识。

(课件配图片出示)五二班学生参加《小苹果》舞蹈表演,其中一列纵队全长18米,如果每两个同学之间相距2米,这列队伍一共站了多少人?

生独立审题,尝试在练习本上独立完成。

生交流方法和思路。

2、钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

3、师:你们真了不起。请到知识城堡一展身手吧。

(课件出示)8个同学站成一队,每两个同学之间距离1.5米。这列队伍全长多少米?

师:线段图可以帮助我们解决许多数学问题。请同学们在练习本上画出线段图,再解答。

生汇报交流。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?我们将在以后的学习中继续探究。

植树问题教学设计(8篇)

植树问题教学设计第8篇(全文3047字)

教前分析:

1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。

2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。

3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。

教学目标:

1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。

3、情感目标:培养学生保护环境的意识。

教学要点:

1、重点:理解种树棵树与间隔数之间的关系。

2、难点:灵活应用发现的规律解决一些相关的实际问题。

学习方法:

动手操作,合作交流

教学具准备:

课件、剪纸(小路、小树、房子)、板书用的字条

教学设计:

课前谈话:

人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。

一、创设情境,导入新课

师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。

两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?

[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]

师:同学们真聪明。

师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。

请同学们伸出你的左手张开五指,数数手指之间有几个空?

生答:4个,这个空我们在数学中把它叫做间隔。

师:老师要考考同学们的眼力。四根手指之间有几个间隔?

生答3个

师:两根手指有几个间隔?

生答:1

师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。

师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!

师:你有一双善于发现的眼睛。

师:老师也收集了一些,请看大屏幕。

[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]

师:在数学中,把和间隔有关的问题称为植树问题。

师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?

二、探究新知

光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!

[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]

一)动手设计并交流

1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?

请你说说看。

生答:长20米的小路,一边、每隔5米

2、我们的小路有几边呀!这条路的全长20米,

每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。

3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!

同学们敢于猜想就向成功迈出了一大步。

4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。

刚才我们才想出这么多到底哪个答案是正确的呢?

下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。

要求:

1、用一条线段代表20米的小路。

用最直观、最简洁的图形表示树,把你们的想法动手画一画。

2、再试一试把你的想法通过算式表示出来。

3、想一想间隔的个数和树的棵数有什么关系?

同学们动手画一画,看一看到底需要多少棵?

[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]

画完以后观察一下树的棵数与间隔数有什么关系?

2、交流展示设计方案

哪个小组想展示一下你们的合作成果?

二)探究两端都栽、一端不栽和两端不栽

师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。

[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]

师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。

1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!

间隔数+1=棵数

棵数-1=间隔数

归纳:先求:总长÷间隔长=间隔数

再求棵数=间隔数+1

同学们的发现太了不起了!

2、第二种设计方案谁想给它起个名字?

生答:一端不栽或只栽一端

名字起的很有特点。

我们再来观察棵数和间隔数之间有什么关系?

谁想第一个说?生答:观察真仔细。老师给你点个赞!

3、这个咱一起给它起个名字吧!

这时候棵数和间隔数之间有什么关系?

师:你的发现太有价值啦!

看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。

学生展示总结发现

两端都栽:棵数=间隔数+1

两端不栽:棵数=间隔数—1

只栽一端:棵数=间隔数

为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。

4、植树问题好解决

知道间隔是关键

两端都栽间加1

两端不栽间减1

只栽一端与间同

[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]

运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。

三、巩固练习

一)准备好接受挑战了吗?同学们请看题

1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?

师:真是会思考的孩子。

2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)

师:这道题我们首先看属于哪种情况?

生:两端都不栽,间隔数-1=棵数

师:你是个会学习的孩子,表现棒极了!

3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。

为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?

首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。

老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数

师:同学们很会思考啊!

4、拓展延伸

刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:

把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?

在解决这个问题时我们可以借助线段图。把答案写练习本上。

四、课堂小结

同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?

生活中处处有数学,希望同学们做生活中的有心人。

[设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]

五、课后作业:

孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?