天文学课程论文最新(10篇)

时间:2023-08-24 22:59:04关键词:天文学,课程,论文,最新,演讲稿

天文学课程论文最新第1篇(全文967字)

天文学是自然科学六大基础学科之一,它推动了人类社会的进步和科技的发展。天文学对于提高民族素质、培养创新精神及科学的思维方法,建立正确的世界观、宇宙观方面有着不可替代的作用。普及天文知识,对破除迷信、反对伪科学也具有重要的科学意义。发达国家及一些发展中国家的大学、中学都普遍开设了天文学课程。

现在,我们学校也同样开设了天文学选修课,这为我们这些从小就对天文产生好奇、现在对天文依然抱有兴趣的人开了一扇圆梦的窗口。

现在社会中,多数青年男女都热衷于星座分析和配对等,根据星座来推断一个人的性格,甚至根据一个人的星座来判定这个人是不是适合做自己的另一半。我不知道这是不是有科学依据,我觉得根据星座来断定一个人太过武断。在天文学的课堂上,关于星座老师给我们做了详细的解析,它命名的由来和它们所处的位置,老师有他独特的讲课方式,内容丰富而不乏味,几个小小的亮点组成图形复杂的星组,人类的想法真是丰富到了极致。星座的说法来自西方,其命名是和西方神话有一定联系的。

九大行星,课堂上老师逐个做了解释,所谓太阳系“九大行星”是历史上流行的一种的说法,即水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。在2006年8月24日于布拉格举行的第26届国际天文联会中通过的第5号决议中,冥王星被划为矮行星,并命名为小行星134340号,从太阳系九大行星中被除名。所以现在太阳系只有八颗行星。

老师讲课的重点是宇宙大爆炸。“大爆炸宇宙论”认为:宇宙是由一个致密炽热的奇点于137亿年前一次大爆炸后膨胀形成的。1929年,美国天文学家哈勃提出星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。宇宙并非永恒存在而是从虚无创生的思想在西方文化中可以说是根深蒂固。虽然希腊哲学家曾经考虑过永恒宇宙的可能性,但是,所有西方主要的宗教一直坚持认为宇宙是上帝在过去某个特定时刻创造的。

这个理论也经历了很多演变,是现代人类通过一种假象加上研究和证据得出的理论。大约在50亿年前,宇宙所有的物质都高度密集在一点,有着极高的温度,因而发生了巨大的爆炸。大爆炸以后,物质开始向外大膨胀,就形成了今天我们看到的宇宙。大爆炸的整个过程是复杂的,现在只能从理论研究的基础上描绘过去远古的宇宙发展史。

天文学对于人类的意义绝非一个“不简单”可以形容的。他的重要性也决不仅仅体现于我上面所说的几个方面。天文学这一学科就像天空一样广袤无边,人类要走的路还很长,要探索的旅程还很远。而人是一切发现的原动力,所以对于天文学爱好者及专门从事天文学的职业工作者来说,任重而道远!

天文学课程论文最新(10篇)

天文学课程论文最新第2篇(全文1331字)

中国古代的天文和历法,具有政治象征意义。颁布历法,标明正朔之所在,是政权正当性的表现。历法又与农时节气密不可分,是非常实用的知识。而要调整历法,就必须观察天文。中国古代是阴阳合历,既要考虑月相周期,又要考虑二十四节气和四季的变化,必须保持每隔一段时间修订历法。唐朝有天文学家、数学家僧一行借鉴印度历法编撰《大衍历》;元代有郭守敬吸收回回历法,制作《授时历》。

明崇祯二年(1629年),钦天监据大统历、回回历推算日食皆不验,曾向利玛窦学习历法天文的徐光启,以新法推算,预测“五月初一日,顺天府日食,二分有余,不及五刻”。结果获得验证。说明又到修订历法的当口了。

礼部乃奏请开局修历,礼部侍郎徐光启领衔,耶稣会士龙华民、邓玉函、罗雅谷、汤若望等,先后被聘入局。其实,早在利玛窦在北京时,朝廷已因大统历预报天象屡次失误而持续多年议论改历。加之弘治以来逐渐放开“私习天文”之禁,这就为西洋天文历法技术提供了立足机会。

利玛窦曾自荐修历,未被理会。但他并不灰心,而是强烈要求罗马派遣精通天文学的耶稣会士来中国,阳玛诺、熊三拔、邓玉函等都可能是因此来到中国的。来华耶稣会士成为一个天文学造诣很高的群体,令与他们接触的不少中国官员倾倒,以致多次主动上书,推荐耶稣会士参与修历。

1629年这次钦天监官员用郭守敬的方法推算日食,再次失误,才出现中西学者联合修撰新历的局面,并于1634年撰成《崇祯历书》。《崇祯历书》修成后,又经过8次实测,以及与保守派的数次较量,崇祯确信西方天文学方法的优越,决定颁行。可惜,此时遭遇易代鼎革之变,竟未克进行。

清军进京后,“奉天承运”,迫切需要颁布新历,以明正朔。汤若望将《崇祯历书》作了删改、补充和修订后,自费刻印献上,改名为《西洋新法历书》,给顺治皇帝献上一份厚礼,于是清廷即刻颁行。康熙时去“西洋”二字,改题《新法历书》。

《崇祯历书》涉及到西方天文学理论,行星运行观测和计算的数据表格、必备的天文数学知识、天文仪器的制造与使用以及中西度量单位的换算。其理论部分《法原》总篇幅的1/3,系统介绍西方古典天文学理论和方法,包括日、月、五星、恒星的运行规律,球面天文学原理,着重阐述托勒密、哥白尼、第谷3人的工作,大体未超出开普勒行星运动三定律之前的水平,但也有少数更先进的内容。

《崇祯历书》所参考的天文学著作,已明确考证出的以17世纪初期的作品居多,而最晚近的是1622年出版的作品。西方几种主要宇宙模式理论,明末都已传入中国,包括亚里士多德的“水晶球”体系、托勒密的行星系说、第谷宇宙模型、哥白尼的日心地动说。

关于哥白尼的日心地动说,在1760年耶稣会士蒋友仁向乾隆进献《坤舆全图》前,就已经引用和介绍到中国,但蒋友仁的《坤舆全图》明确宣称托勒密体系是错误的,第谷的理论不如哥白尼的正确。与此不同的是,《崇祯历书》虽然引用了哥白尼《天体运行论》中27项观测记录中的17项,对《天体运行论》中的有些章节甚至直接翻译,对其日心地动说的重要内容也有所披露,但对日心说却持否定态度,认为哥白尼用来论证地动的理由,不具说服力。

哥白尼1543年发表《天体运行论》,其宇宙观从学理体系说虽属先进,但直到17世纪都还没有取得令人信服的优势。特别是哥白尼在仪器制造、观测技术和精度方面并不出众,他的日心说对历法制订影响不大。与观测精准的第谷学说相比,哥白尼学说对于修历缺乏实用性。这不仅说明了国人选择西学中的实用主义倾向,为蒋友仁润色文字的钱大昕和作序的阮元都对哥白尼学说持否定态度;而且也说明中国学者将科学修历的技术实践,转向探索自然奥秘的天文学理论兴趣,仍然存在一道鸿沟,后者必须有更多的社会制度条件加以配合。

天文学课程论文最新第3篇(全文1668字)

摘要:中国古代天文学有着上千年的悠久历史,自神话时期兴起,绵延千年不衰。但中外学者对于中国古代天文学的质疑也从未停止过。本文从科学哲学角度,叙述中国古代天文学的兴起与发展,详细分析其功能效用与历史影响,从而辨别中国古代天文学是否为真科学。

关键词:中国古代天文学;科学哲学;真科学

一、中国古代天文学的兴起

从众多资料来看,中国古代天文学的历史之悠久,可以追溯到上古时期。传说在少昊氏时,人人私下研习天文,都搞起了沟通上天的巫术,致使天下大乱。颛顼帝命令重、黎二人“绝地天通”,禁止了平民与上天沟通交流。之后与天交流的权利就专属于天子,也只有天子钦定的巫觋才有资格去沟通上天。从此天文学在古代中国就成了皇家的专属品,而天子也开始拥有了对“天命”的解读权。这也就是中国漫长天文学史的开端。

二、中国古代天文学的发展

我国天文学至于夏商周代时已经有了一定水准的历法。特别是到了周代,已经有人开始观测流星、行星等天象及星辰。相比于上古时代,这已经有了很大的进步。

传统的天文学体系是在春秋战国时期正式完成的。在这一时期,不仅二十八星宿体系确立,而且在历法方面有了重大的进步。我们古人开始通过观测日影长短的周年变化来确定冬至和夏至的日期。并且在这一时期流传了大量人们观测流星、彗星等天象的详细记录。这些都成了我国历史上的宝贵资料。

自从春秋战国时期传统天文学大框架建立之后,秦、汉、魏晋南北朝、隋、唐、宋时期,天文学进一步蓬勃发展。不仅历法得到统一,二十四节气,浑天仪等天文知识以及天文学仪器的进一步发明使得我国的天文学一路高歌猛进。到了元朝,由于铁木真缔造了一个横跨欧亚大陆的辉煌帝国,我国古代天文学甚至传到阿拉伯等国,可谓是盛极一时。明清时期,中国开放了千年来“严禁私习天文”的禁令,使得我国古代天文学有机会走向一个新的巅峰。

三、对中国古代天文学的质疑

也正是因为我国古代天文学在很长一段时间是服务于皇室,很多中西方学者就质疑中国古代天文学是否是真正的科学。甚至有些激进派的学者直接将中国古代天文学打入伪科学的深渊。在此,笔者持有不同看法。

马克思主义的科学观认为,科学是历史发展总过程的产物,它抽象地表现了这一历史发展总过程的精华,这个精华显然包括自然科学与社会科学。每一种不同的运动形式都构成每一门具体科学的研究对象,而整个物质世界和精神世界在总体上便构成总体科学的研究对象。因此,所谓科学就是对自然界和人类社会运动、变化规律的概括,都是人们在感觉经验基础之上用“理性方法”整理概括的结果。此外在科学的本质与功能上,马克思还突出强调了科学技术是生产力,科学是一种在人类历史上起推动作用的、革命力量的思想。

按照马克思的观念,我们反观中国古代天文学,这是一门有着上千年悠久历史的学科,毫无疑问它也是历史发展的产物。无数古代先贤们定历法、造仪器、编文献来研究这浩渺天空中天体运转的奥秘。这分明就是在研究自然界的运动变化规律。更为重要的是,我国古代天文学对社会发展变革起了很大的推动作用。

中国古代天文学最重要的应用领域之一便是航海。早在战国时期中国人就根据天文学中观测到的星辰位置,发明了具有指向性功能的“司南”。这在当时的世界上是独一无二的。这为日后开辟海上丝绸之路做出了不可磨灭的贡献。

如果大家觉得航海之术离我们日常生活过于遥远,不能说对社会变革起了决定性的作用。那么,中国作为一个传统的农业大国,农业该是我们的立身之本了吧。中国古代天文学对我国农业的发展也起到巨大的推动作用。在石器时代,人们保持着刀耕火种的农业经营方式,这种粗放的耕作模式导致了极端的低产。不过正是伴随着天文学的发展,历法的完善,节气的确立,使得传统农业高度关注农时后,精耕细作的优良方式才逐步趋于成熟,造福了无数黎民百姓。

如果说马克思的观点太过于阳春白雪,那当代科学哲学界的泰斗吴国盛教授在《什么是科学》一书中精辟分析了科学的两种基本用法,堪称下里巴人式的真知灼见。第一种是可以依靠它来振兴国家,第二种是某种积极意义上的价值判断。根据这种观点,中国古代天文学及推动了航海时代的发展,促进了国家的繁荣发展。同时,它又大力推动了农业的进步,在价值意义上来讲也是毋容置疑的“好东西”。那么我们为什么不能承认中国古代天文学是真正的科学呢?

参考文献:

[1]江晓原,钮卫星。中国天学史[M]。上海人民出版社,2005.

[2]遵妫。中国天文学史[M]。上海人民出版社,2007.

[3]张之沧。科学哲学导论[M]。人民出版社,2004.

[4]吴国盛。什么是科学[M]。民出版社,2016.

天文学课程论文最新(10篇)

天文学课程论文最新第4篇(全文2725字)

中国是世界上最早进行天文观测和记录的国家之一。中国古代帝王自称为天子,并且在历代王朝中都设有专门的官员进行天文观测,由此可见古代天文学在我国政治和社会生活中的重要作用。在秦代,负责天文学研究的官员被称为太史令,以后历代多沿袭这一称呼并稍有变化,到明清时期,天文观测主要由钦天监这一专门机构负责。

天文学和数学、农学、医学被公认为中国古代最发达的四门自然科学。中国古代天文学的很多成就不仅在当时处在世界前列,即使在现代,许多观测数据仍然具有十分重要的研究意义,有些数据更是我国所独有。相比中国古代天文学,西方天文学在16世纪以前发展较缓慢,只是在近几百年随着其他自然科学的发展才取得突破性进展。

中国古代天文学早在新石器时代已经开始有所萌芽,在中国出土的彩陶中,有不少上面已经绘有太阳和月亮的图案,代表了古人原始的天文学观念。中国进入奴隶社会以后,在夏商周三代,天文学更是有了飞跃式的发展。在河南安阳殷墟出土的甲骨中,我们可以看到大量关于商代天文观测的记录。根据当地出土的甲骨,我们知道商代将一年分为十二个月,闰年十三个月。同时甲骨上已经有了关于日食、月食和星辰的记载,这可能是世界上最早的有文字可考的天文学资料了。商代的历法被称为阴阳历,是迄今为止已知的较为完整的一部最早的历法。同时,商代用干支记日,数字记月,每一个月又被分为三旬。由此可知,早在商代,我国已经建立起一套较为完善的天文历法系统。战国秦汉时期百家争鸣,也是我国天文学取得巨大进展的一个辉煌时期。战国时编著的《甘石星经》,是世界上最早的天文学著作。西汉时期,出现了许多新的天文观测的仪器,并在天文学理论方面提出了“浑天说”。隋唐时期,我国进行了世界上最早的子午线长度实测。宋元时期我国创制了《授时历》,并制作了简仪等新的天文观测仪器。明清时期我国天文学处于衰落阶段,西方天文学兴起,这一时期主要是翻译国外天文学著作。

在我国古代天文学研究中,星象观测一直是一项重要内容。中国古代的正史中有专门记载天文资料的部分叫做天文志,其中就包括星象观测的方法、观测的仪器和星象观测的记录。在星象观测中,天文仪器一直发挥着重要的作用。中国古代的天文仪器种类繁多,各个功用也不相同,主要有用来计时的工具、用来观测星象的工具、用来制定历法等几种,具有代表性的有圭表、浑仪和简仪等。

除此以外,古代中国人还设计了地平经纬仪,赤道经纬仪,黄道经纬仪等许多仪器进行天文观测。在我国天文学发展的历程中,天文仪器的不断革新,极大地推动了天文观测的发展,也为我国天文学历法的发展提供了可靠的依据。

我国古代天文历法起源得非常早,从最早的成文历法《四分历》开始,后又经多次历法改革,其不断得到完善和发展。据统计,我国从古至今使用过的历法有一百多种,不管有多少种历法,都可以分别归到阴历、阳历、阴阳合历三大系统当中。阳历是以地球绕太阳公转的周期为计算基础的;阴历则以月亮绕地球的公转周期为计算的基础;阴阳合历是调和太阳、地球、月亮的运转周期制定的历法。其中,《太初历》是中国有完整资料的第一部传世历法,与《四分历》相比,其进步之处主要表现在以正月为岁首,将我国独创的二十四节气分配于十二个月中,并以没有中气的月份为闰月,从而使月份与季节配合得更合理;同时行星的会合周期测得也较准确。到东汉末年,刘洪制定了《乾象历》,第一次将月球运行有快慢变化引入历法。在天文历法方面,有三位科学家做出过非常杰出的贡献,他们是祖冲之、僧一行、郭守敬,他们极大地推动了中国历法的改革和发展。

在祖冲之以前,人们使用的历法是天文学家何承天编制的《元嘉历》。祖冲之通过自己多年的观测,发现了《元嘉历》中存在的许多错误,并编制了新的《大明历》。在新历法中,他首次将岁差引进到历法中,区分出了回归年和恒星年,并且通过多年的观测,得出了木星每84年超辰一次的结论。僧一行修订的《大衍历》是一部具有创新精神的历法,它继承了中国古代天文学的优点和长处,对不足之处和缺点作了修正,因此,取得了巨大成就。它比较正确地掌握了太阳在黄道上运动的速度和变化规律。此外,僧一行还组织在全国13个点的天文测量,并在观测的数据中得到了北极高度相差一度,南北距离就相差351里80步(约合131.3千米)的结论,这个数据在当时世界上是非常领先的。郭守敬的主要贡献也是在历法编著方面,他编著了中国一部很精良的历法《授时历》,为了编撰这部历法,他分析研究了以前的几十部立法,并设计和建造了许多新的天文仪器。

在天文理论方面,我国古代人民也取得了辉煌的成就。特别是在两汉时期,人们对宇宙的认识不断深化,提出了“浑天说”,认为“浑天如鸡子,天体圆如弹丸,地如鸡子中黄,孤居于内”。进而又有人提出了“宣夜说”,认为天没有固定的边际,无边无际,模糊地提出了宇宙的无限性。著名的中国科技史学家李约瑟先生在其所著的《中国科学技术史》天文学卷中,曾为“宣夜说”专设一节,盛赞这种宇宙模型,认为这种宇宙观非常进步,与同时期的希腊任何学说相比都毫不逊色。虽然如此,但是我们必须承认“宣夜说”并不是一种正确的宇宙模型,而且对古代中国产生的作用也远没有“浑天说”大。在我国古籍《周髀算经》中,古代中国人还建立了“盖天说”的宇宙模型。这种模型提出了大地与天相距80,000里;大地中央有高大的柱形物;日月星辰在天上环绕北极作平面圆周运动等9个观点。特别值得一提的是,这种宇宙模型与古代印度的宇宙模型具有惊人的相似性。在中国古代,人们为了弄清楚人与宇宙的关系,还提出了各种假说,每种假说都不乏支持者。从公元前100年开始直到唐代,人们为了探究宇宙奥秘,围绕这些假说进行了持续的争论,其中有不少我们所熟悉的古代科学家为自己支持的观点著书立说。同时,人们还探讨了日食,月食,太阳和地球的距离等很多问题。如我们熟知的“两小儿辩日”的故事,其中就表达了古代人对太阳与地球关系的思考。由于“浑天说”不能很好地解释月食的现象,所以历代很多天文学家都去努力思考,试图解决这个问题,并提出了许多猜想,其中以张衡在《灵宪》和朱熹在《朱子全书》中的猜想最具代表性。

在中国古代,天文学与星象具有非常密切的关系,并以天人感应为哲学基础,形成了中国古代很具特色的占星学。占星学在古代的主要功能是昭示天命及其变化,为当权者的统治提供理论基础。天命如果有所改变,就会通过天象昭示天下。所以古代帝王非常重视天象的变化,尧帝“历象日月,敬授人时”(《尚书?尧典》),舜帝“在璇玑玉衡,以齐七政”(《尚书?舜典》)都被作为重大事件记录在册。

中国古代天文学不仅在当时取得了巨大的成就,而且为我们留下了许多宝贵的资料。如在20世纪四十年代初,金牛座蟹状星云被天体物理学家认出是公元1054年超新星爆发的痕迹,而在我国古籍中已经找到了关于这次爆发详细的记载。我国古代文献中保留了大量世界独有的天文记录,但是在20世纪以前,对我国古代天文学资料的研究并不充分。

对于中国古代天文资料的研究,早期主要由一批海外归来的学者进行,他们做了许多开创性的工作,创办了许多介绍中外天文学的期刊,使中国天文学资料的研究逐步专业化,并形成了天文史学这一新的研究学科。新中国成立后,中国天文史学的研究终于走上正轨,出现了一批国际知名的天文史学家,他们著书立说,考证许多中国古人杰出的天文学贡献,所以我们现在才可以看到我国古代如此辉煌的天文学成就。

天文学课程论文最新第5篇(全文2794字)

也谈《周易》和天文学——向李申先生讨教

经常拜读李申先生有关《周易》与古代科技关系的大作,今又在国际易学联合会网站上看到李申的文章“《〈周易〉和天文学》”,受益匪浅。由于曾经撰写《儒家文化与中国古代科技》对这一问题略有涉猎,故有些疑问,提出来向李先生讨教。

李先生承认刘歆、一行是古代有贡献的天文学家,并且都用《周易》的象数解释历法的基本数据。我本以为仅凭这两点就可以认定《周易》对古代历法有积极作用。而李先生则认为,刘歆用《周易》的象数解释历法,“不过是在已经做成的历法上涂了一层油彩。无论这层油彩的色调如何,但历法本身没有变。”又说:“假如我们把历法当作一本书,那么,周易,仅仅被某些人(如刘歆,一行)用来做了这本书的封皮”。凭我的理解,李先生的观点是:《周易》对古代历法是有作用的,只是作用不那么大(或可有可无)。(不知这种理解恰当否?)

问题一,如果《周易》对古代历法的作用不那么大,刘歆、一行为什么在修订历法时,还予以高度的重视?这会有很多可能的答案。但有一点可以肯定,在当时,《周易》对于历法是非常重要的。如果这是事实,那么,我们凭什么说《周易》对古代历法的作用不那么大。

问题二,如果刘歆、一行用《周易》的象数解释历法所起的作用是可有可无的,那么,这种解释方法为什么会被一直沿用,而且,古代历法一直是不断发展的?虽然古代历法的不断发展可以用多种原因来解释,但是,《周易》所起的作用是不可低估的。

问题三,如果刘歆、一行用《周易》的象数解释历法所起的作用是积极的,我们凭什么说《周易》对古代历法的作用不那么大呢?刘歆、一行用《周易》的象数解释历法虽然在历史上也受到批评,但应当从历史发展的角度来看,后人的批评,不应当否认其曾经起过的作用,就像今天可以不用《周易》的象数来研究天文学,但不能以此否认《周易》的象数对研究历法曾经起过的作用。

我个人以为,要否认《周易》对古代历法有积极作用有很多困难,所以,我更愿意研究这样的问题:《周易》为什么能对古代历法产生积极作用?若李先生有兴趣,我们可进一步探讨这样的问题。

再谈《周易》和天文学——向李申先生讨教

对于中国古代历法史上用《周易》象数比附历法基本数据的现象,李申先生在《〈周易〉和天文学》中,用不少篇幅论述了古代天文学家所做出的批评。其实,古代天文学家的不少批评仍然是根据《周易》而做出的。试举李申先生所引的两例进行分析:

其一,李申先生引杜预、何承天对刘歆三统历的评论。杜预对刘歆三统历的批评主要是讲三统历不准确,并根据《周易》“革”卦的《象》曰:“泽中有火,革,君子以治历明时”为依据,提出修历的原则。他说:

《书》所谓‘钦若昊天,历象日月星辰’,《易》所谓‘治历明时’,言当顺天以求合,非为合以验天者也。

后来的何承天也说:

夫圆极常动,七曜运行,离合去来,虽有定势,以新故相涉,自然有毫末之差,连日累岁,积微成著。是以《虞书》著钦若之典,《周易》明治历之训,言当顺天以求合,非为合以验天也。

这里所谓的“顺天以求合”,就是要求根据天象制定历法并使历法符合天象;《尚书·尧典》中帝尧命令羲氏、和氏通过观测日月星辰的运行制定历法以及《周易》中所说“《易》与天地准,故能弥纶天地之道。仰以观于天文,俯以察于地理,是故知幽明之故”,就是“顺天以求合”。何承天认为,制定历法应当以儒家经典《尚书》中的《虞书》以及《周易》为依据,应当“顺天以求合”,而不是为了让天象符合于历法,不是“为合以验天”。

其二,李申先生引邢云路的《古今律历考》对一行大衍历的评论。邢云路的《古今律历考》的第一卷为《周易考》,讨论《周易》和历法的关系。其开宗明义便是:《象》曰:“泽中有火,革,君子以治历明时”,主张改历。接着,便是“律历配六十四卦”,讲64卦与12律24节气相配。又说:“大衍为天地之枢,如环之无端,盖律历之大纪也。”该篇最后说:

夫是易也,显道佑神,何物不有,历固在其中矣……至于气朔之分秒,升降,消长、一而不一,则在人随时测验,以更正之。正其数即神乎《易》也(这几个加点的字,李申先生没引述——笔者注),汉史不知,遂以大衍之数,牵强凑合,以步气朔,而谓历数诸率皆出于此,则非矣。

李申先生认为,“邢云路的话反映了他那个时代的某种精神:理学已经严密地控制了人的思想,作为六经之首的《周易》,更加不容亵渎。易“显道佑神”,给人们指示大道,赞美和拥护神灵,所以历“固在其中”,因为《周易》已经包含了一切;不仅历,而且医、律,可能还有许多别的什么,都“固在其中”。邢云路还没有胆量说不在其中,或者是没必要说那些结论性的,授人以柄的话,还是就事论事吧。”我以为,李申先生的解释有臆测之嫌。我认为,邢云路想要说明的是,牵强凑合地去附会《周易》象数并不是《周易》之神妙之处,只有“随时测验,以更正之”才是《周易》的根本。这与以上杜预、何承天所言是一致的。

所以,我认为,古代历法中的争论,大都依据于《周易》,谁也没有贬低《周易》对于古代历法的作用。但是,在对《周易》的理解上略有不同。

三论《周易》和天文学——向李申先生讨教

李申先生在《〈周易〉和天文学》中认为,古代历法家用《周易》解释历法是牵强附会、“大约有些苦衷”,或者说是,可有可无,不得已而为之。笔者不敢苟同。我认为,古代历法家用《周易》解释历法反映了三方面的积极意义:

其一,从科学发现与理论解释的关系来看,用《周易》解释历法是历法研究的进一步深入。在历法研究中,获得正确的历法数据是非常重要的。虽然我们可以知道古代历法家大都精通《周易》,并且用《周易》解释历法的基本数据,但他们如何算出这些数据,《周易》在他们计算数据时实际上起了怎样的作用,无论是积极的,还是负面的,这涉及历法家的思维和心理过程,我们不得而知。我们可以讨论的是,古代历法家用《周易》解释历法的基本数据,这对于古代历法的发展来说,是积极的,还是负面的。我们首先必须承认,在科学研究中理论解释的必要性。古代历法家不满足于历法的基本数据,而试图对它做出解释,这是科学研究的进一步深入,是必要的,不是可有可无。至于为什么用《周易》来解释,这是由当时历法研究的“范式”来决定的,不能说是“有些苦衷”。

其二,从遵循“范式”与打破“范式”的关系看,用《周易》解释历法是古代历法研究的重要组成部分。《周易》象数是当时历法研究所遵循的“范式”。这个问题证明起来很复杂,但有一点可以肯定,古代历法家大都遵循这个“范式”,如果古代历法与《周易》相矛盾,肯定不会被认可,即使是用现代天文学的理论加以解释。如果承认《周易》象数是古代历法研究的“范式”,那么,《周易》象数对于古代历法研究的积极意义,那就是不言而喻的。当然,在科学研究中,既有遵循“范式”,还有打破“范式”,这在科学发展中是同样重要的,不可顾此失彼。

其三,从科学与文化的关系看,用《周易》解释历法是运用文化来促进科技发展。在中国古代,《周易》文化是一种强势。用《周易》解释历法可以使历法得到普及和延续,相反,如果历法与《周易》相矛盾,不仅无人会认同,而被抛弃,而且作为历法家,他们也不可能这样做。有人可能会以现代科学与文化的差异性来否认这种做法,但是,在中国古代,科技是文化的一部分,这一点在拙著《儒家文化与中国古代科技》已作论述。笔者甚至认为,即使在今天,把科学与文化对立起来也是有危害的,科学与文化之间应当保持一种和谐。在今天,科技成了强势,用文化解释科学,可能是可有可无,但是,用科学来解释文化,就非常必要;与此对应,在古代,《周易》是强势,用《周易》解释历法,当然也非常必要,也具有积极意义。

以上只是就中国古代用《周易》解释历法对于古代历法发展的积极意义做些阐述,至于今天是否还具有同样的意义,这只能另行再议。

天文学课程论文最新(10篇)

天文学课程论文最新第6篇(全文3057字)

摘要:《崇祯历书》是由徐光启等人历时五年编撰而成,是介绍欧洲天文学知识的文学著作。《崇祯历书》分为基本五目和节次六目两部分。基本五目主要介绍欧洲天文学中的天文仪器、天文数学和天文学相关理论,节次六目主要介绍历法方面的知识。本文将对《崇祯历书》中的数学和天文学知识基础进行探讨。

关键词:《崇祯历书》;数学基础;天文学基础

《崇祯历书》中采用了几何算法和天体系统,清晰地引入了地球与地理经纬度的概念,同时采用了西方的计量单位,对欧洲天文学的基本理论、天文学仪器和必要的数学知识进行了详细的阐述,是我国较为全面的介绍欧洲天文学的著作,对天文学在我国的传播具有重要的意义。其中《测量全义》作为《崇祯历书》的基础文献,记载了西方球面天文学和三角学的相关知识,是《崇祯历书》数学和天文学研究的基础。

一、《崇祯历书》的天文学基础

(一)崇祯改历与天文学知识

在十七世纪的中国天文学逐渐出现改革。在封建社会里,历法的作用不仅在于告知民众时间,更是王权得以确立的条件。在明朝末期,由于钦天监采用的元朝郭守敬等人编制的《大统历》进行的日食推测,屡次不能够得到验证,使明朝官员对《大统历》中的天文学知识产生质疑,因而上书请博访知历人员对天文学知识进行改革。徐光启通过崇祯二年发生的日食现象,将传教士预推的时间和食分与《大统历》预推的时间与食分进行比较,得到传教士预推的时间和食分比较精准,而钦天监使用的《大统历》预推结果则出现偏差。长期参与历法编纂工作的钦天监五官正戈如实将情况汇报给了崇祯帝,崇祯帝这才同意了改历的申请,并命令徐光启、李天经和李之藻等人以及入华的耶稣会天文学家进行西法改历的工作。在徐光启、李天经等人的支持下,从崇祯二年到崇祯七年,中西学者共同努力编译了长达137卷的长篇巨著《崇祯历书》,促使了明清之际的西学东渐渐趋高潮。

《崇祯历书》中五目指的是:法原,即天文学基本理论,包括球面天文学原理;法数,即天文数表,附有使用说明;法算,即天文计算必备的数学知识,包括平面和球面三角学几何学;法器,天文仪器知识;会通,指中国传统方法和西历度量单位的换算。六次指的是:日躔历、恒星历、月离历、日月交会历、五纬星历、五星交会历六种。包括日月五星运动,恒星方位,日月交食,节气,朔望等的中西换算。徐光启为了介绍一些基本的天文学理论,还特意在基本五目中设立了法原一目,在法原中着重介绍了哥白尼和第谷的天文学体系,还涉及到更早一些的托勒密体系的内容。这些传教士在中国采取了科学传教的策略,在传播天主教的同时,也将西方天文、历算等科学知识输入中国。在《崇祯历书》的天文学知识部分有大量与开普勒天文学相关的内容。在改历的过程中,欧洲传教士金妮阁曾奉命返回欧洲搜集与天文学相关的研究著作和寻找西方优秀的天文学家,最终其带回了七千多部著作回到中国,对《崇祯历书》的编撰工作产生了重大的影响。此外,开普勒在《崇祯历书》的编纂工作中与中国的传教士进行过大量的书信往来,详细回答了邓玉函在编纂工作中所出现的问题。

(二)《崇祯历书》中的天文学思想

《崇祯历书》中开普勒对天文学的主要贡献在于他对天体机械运动现象进行描述,并通过机械运动的知识来对天体运动现象进行解释,之后分析天体运动的原因,通过数学假设解释天体物理运动的本质。在《崇祯历书》中的观点认为天文学与物理知识是有一定的界限的。例如,书中认为天体实际的薄厚实际上是天体之间的距离,而脱离的距离及无法表述其与速度之间的关系,因此,其在开普勒天文学中是一个很重要的概念,同时也反映了当时的西方主流天文学的思想,即认为数学天文学与物理天文学之间没有必然的联系。

《崇祯历书》系列历法采用的是第谷体系,这一点很多文献已经证明。《崇祯历书》系列历法中的日躔也是参考了第谷的理论。《崇祯历书》中强调了太阳在天体中的中心位置,认为太阳是万光之源,其他所有的天体都在或多或少地接受太阳的光源,太阳的地位就像君主在群臣中的地位一样。这样的观点与托勒密在《至大论》、哥白尼在《天体运行论》以及开普勒在《天文光学》中所阐述的观点是相一致的。然而,在具体的论述中托勒密、哥白尼与开普勒对太阳中心位置的具体论述是不尽相同的。托勒密在论述中采用midpart一词,强调太阳是在天体的中间部分,而哥白尼则是采用nearcenter一词,强调太阳是在中心位置附近,这两位天文学家都是在数学意义上强调太阳的中心位置,而开普勒不仅认识到了太阳在天体中数学上的中心位置,而且认识到太阳在天体中物理上的中心位置。他阐述,太阳是天体光与热的直接来源。

从物理力源的角度强调了太阳是天体运动的中心,认为太阳为天体的运动提供了动力来源,并提出天体的运动是由于太阳的旋转,太阳是一个巨大的磁体,吸引天体围绕其运动。《崇祯历书》融入了欧洲天文学的基本思想,尤其是开普勒的天文学物理思想,对《崇祯历书》的编撰工作产生了重要的影响。

(三)《崇祯历书》与天文仪器

16世纪末,欧洲传教士开始在中国开拓宗教事业。同时将欧洲科学和技术传入中国,导致某些中国科技领域一定程度上的欧洲化。其中,天文学和天文仪器的变化在社会上引起了很大反响。1629年起,邓玉函、汤若望、罗雅谷等传教士应徐光启的邀请供职皇家天文机构,在《崇祯历书》比较全面地介绍了17世纪初以前的欧洲天文学和天文仪器。这本书中既解说了发明不久的新仪器,又描述了若干已经或即将被淘汰的古典仪器,内容包括仪器的几何学理论、基本构造、安装和使用方法等。

传教士所造仪器与同时期的欧洲产品相比是落伍的,但在中国历史上是先进的。它们之中的大多数未能广泛传播,因为对于中国人来说属于新知识,有些技术仅停留在书本描绘阶段,有些仪器只是御用品,也没能在天象观测上得到较好地应用。

二、《崇祯历书》的数学基础

天文学的研究离不开数学基础的支持,《崇祯历书》采用了丹麦的天文学家第谷所创立的几何学计算方法,将几何学、三角学用于天文学预测与研究中。其中《测量全义》是《崇祯历书》中的基础,汇集了平面三角和球面三角的相关知识以及测绘仪器的制造等知识,其内容丰富,是当时先进的天文学数学知识的总结。《测量全义》详细讲述了平面几何、立体几何、圆锥曲线、球面三角以及球面天文等数学知识。

在平面几何相关知识中主要对直线三角形、面上、面下、线上和线下等公式和测量方法进行了总结。通过举例的方式对定理进行阐述和证明。具体方式都是通过文字论述。例如在论证圆面积计算公式中,通过先给出命题,之后以解曰为标志将抽象的命题以具体的题目的方式将其具体化,然后通过论曰、再论曰等词汇,对具体题目进行具体的论证。《测量全义》中公式与理论的论证体现了西方数学中所蕴含的严格的逻辑性和确定性,在论证的过程中使每个环节环环相扣,这与我国传统数学中寓理于注和注重算法的形式形成了鲜明的对比。

此外,在命题的证明过程中采用了反证法开拓了中国数学家的思维。立体几何主要论述了柱、台、球和锥的一些性质以及其计算公式。《测量全义》对例题几何的论述,其内容较为零碎、讨论也不尽充分,但其完善了我国数学家的几何体系,对我国数学的发展产生了深远的影响。在圆锥曲线、球面三角和球面天文部分对圆锥、球面以及球面与天文的知识进行了更加详细的介绍,丰富了我国数学和天文学研究的内容。

三、总结

徐光启以翻译求会通,以会通求超胜为目的编译了《崇祯历书》,这具有非常重要的意义。《崇祯历书》的编纂对我国数学和天文学的发展具有重要的影响,一方面,它刺激中国学者整理中国传统文献,另一方面,将中国数学与天文学知识与西方知识相融合,并进行一定的创新研究,推动了中国数学和天文学的发展。

参考文献:

[1][明]李天经、汤若望等,《浑天仪说》,徐光启。崇祯历书(附《西洋新法历书》增刊十种)[M]。潘鼐,汇编。上海:上海古籍出版社,2009.

[2]张伯春。明清测天仪器之欧化[M]。辽宁教育出版社,2000(12)。

[3]邓可卉。《测量全义》在中国[C]。//第四届数学史与数学教育国际研讨会论文集。2011:83-84.

[4]王国强,孙小淳。《崇祯历书》中的开普勒物理天文学思想[J]。中国科技史杂志,2008,29(1):42-53.

[5]胡开泰。《崇祯历书》的数学和天文学基础--以《测量全义》为中心[D]。内蒙古师范大学,2009.

[6]褚龙飞,石云里。《崇祯历书》系列历法中的太阳运动理论[J]。自然科学史研究,2012.4(31)。

天文学课程论文最新第7篇(全文4508字)

1.导言

说到西方古典观测天文学,对此稍有了解的人会立即联想到著名的丹麦天文学家第谷·布拉赫(TychoBrahe)。他对星体位置的精确和详细的观测直接促成了其助手约翰内斯·开普勒(JohannesKepler)发现行星运动的三大定律,而这又进一步帮助艾萨克·牛顿(IssacNewton)奠定了经典力学的基础。如果说牛顿的名言“站在巨人们的肩膀上”的确具有正面含义的话,那么,第谷无疑是这些巨人中的一个(文献中对第谷·布拉赫的简称不统一,有称布拉赫,有称第谷,本文采用后者)。第谷在观测天文学领域的贡献是极其重大的,在他之后鲜有人能够达到类似的高度。然而在天文学史上,的确有一位堪与第谷相媲美的观测天文学家,他就是本文所要叙述的波兰天文学家约翰内斯·赫维留(JohannesHevelius)。

2.出身与早年生涯

赫维留1611年1月28日出生于格但斯克(Gdansk),该城市虽然位于现今波兰的北部,在历史上,却曾多次被德国占领,因此它还有个德语名,叫做但泽(Danzig)。格但斯克位于波罗的海沿岸,是个海港城市,赫维留诞生时,该城市正处在由波兰统治和管辖的黄金时期,它在当时不但属于汉撒同盟,在贸易上享有特权,而且在民族和宗教上也享有充分的自由,使其成为当时欧洲少有的笼罩在繁荣开放、和平富裕气氛下的城市。赫维留出生在格但斯克的一个啤酒酿造世家,从小被寄予传承家业的厚望。他的母语是德语,其家族是具有德国和捷克血统的路德教贵族。他6岁起在家乡格但斯克接受基础教育,12岁时,家人为使其通晓波兰语,将他送到格但斯克南边的一个通行波兰语的村镇上学,三年后回到格但斯克继续学习。

在格但斯克,有一位叫彼得·克鲁格(PeterCrüger)的数学老师,对赫维留今后的人生与事业起了至关重要的作用。克鲁格曾就读于德国维滕堡大学(第谷也曾就读于此),本身是一名优秀的天文学家和数学家。他不但教授赫维留数学与天文知识,还向他传授天文仪器制造技术和雕刻术。受老师影响,年轻的赫维留对天文产生了浓厚兴趣,尤其敬仰第谷卓越的观测技术及其在天文领域的成就。20岁时,赫维留被家人送往荷兰莱顿大学主修法律。尽管如此,他仍心系天文,在学业完成后,游历了英国和法国,在那里结识了一些著名学者,包括天文学家皮埃尔·伽桑狄(PierreGassendi)和伊斯马尔·布里奥(IsmaelBoulliau)。23岁的他回到家乡,开始接手家业并于次年和其隔壁酿酒商的女儿卡特琳(KatharinaRebeschke)结婚。1639年6月1日,格但斯克发生日食,赫维留对此进行了细心的观测。五天之后,克鲁格告别人世,临终前他希望赫维留能够继续保持天文观测和研究。恩师的离世以及对天文的持之以恒的兴趣终于让赫维留下定决心,从此投身于天文事业。

3.天文成就

赫维留在天文领域的贡献主要有如下几个方面:月球观测、太阳和恒星观测、行星和彗星观测、仪器制造和星图绘制。这些将在下文中一一阐述。

3.1月球观测

从1642年开始,赫维留使用自己制造的望远镜对月球进行了历时5年的观测,终于在1647年正式出版了其生平第一部天文着作--《月面图》(Selenographia)。月面图,顾名思义,就是描绘月球表面的图谱,总共六十幅,其中包括三幅直径约29厘米的满月面大铜版画,以及诸多描绘不同月相表面的小铜版画。这些铜版画均由赫维留亲自制作,其精湛的绘画与雕刻技艺在此得以充分施展,而在这之前尚无人能够如此精确详细地绘制月球表面(图2)。在这本着作中,赫维留用地球上的地名来标注所观测到的月面地貌特征,虽然同时期的意大利学者吉奥瓦尼·瑞齐奥利(GiovanniRiccioli)也创立了人名法来命名月球地貌并被广泛采用,但地名法依旧在一定程度上保留并沿用至今。

赫维留的月面图集首创性、学术性和精致性于一身,堪称当时天文界之鸿篇,它的出版为赫维留赢得了当时欧洲天文界乃至科学界和社会界的崇高威望。1651年,他受聘为格但斯克市议员。1664年,被推选为伦敦皇家学会会员。另外还必须提及的是,在绘制月面图期间,赫维留发现了月球的经天平动。天平动是指从地球上观察,月球的可见部分会出现上下左右的浮动。上下浮动称为经天平动,左右浮动称为纬天平动。由于天平动,使得人们能够看到月球表面多于50%的区域(而不是正好50%)。今天,人们知道,天平动是由多种因素造成的,其中经天平动是月球绕地轨道为椭圆所致。

3.2太阳和恒星观测

赫维留在1642~1645年间对太阳黑子进行了观测。他认为太阳是个火球,黑子是极细的蒸汽聚集体,耀斑则是太阳表面最明亮的地方。他测量了太阳的直径,并推测其自转周期约为27天。他还多次对日食进行了观测记录(包括1639,1659和1661年)。

赫维留对著名的鲸鱼座o星进行过长期观测。鲸鱼座o星也叫米拉变星,中文名为蒭藁增二,由于其亮度不断变化,因此很早就被天文学家所注意。最早描述该星的是德国天文学家大卫·法布里奇乌斯(DavidFabricius),他在1596年搜寻水星时发现它。1638年荷兰天文学家约翰·霍华德(JohannHolwarda)确定其变光周期为11个月。从1659年开始,赫维留对这颗变星进行了长达25年的观测。他曾撰写了专论--《米拉星之历史》(HistoriolaMiraeStellae),第一次将该星命名为米拉,意思是不可思议、美妙无比。在此,他根据时间顺序,将前人的研究成果加以介绍,随后给出了自己的观测结果。他最终认为,米拉星的变光原因在于该星拥有很厚的云层,这些云层密度的变换导致了其亮度变化。今天我们知道,蒭藁增二是一颗脉动变星,其亮度变化起源于其自身的收缩与膨胀,变光周期为80~1000天。

经过对恒星坚持不懈的观测,赫维留成功编撰了新的星表--《赫维留星表》(CatalogusStellarumFixarum)。该星表有两个版本,手写版由赫维留亲自制作完成,现收藏在美国犹他州杨百翰大学的克拉克图书馆中,而印刷版则出自1690年的《天文导览》(ProdromusAstromiae)一书(该书内容虽在赫维留生前已完成,但在他死后才出版)。印刷版的星表共107页,大小为35.5×22.0厘米,共收录1564颗恒星,其中有600多颗是赫维留新发现的星,而在此之前的《鲁道夫星表》(TabulaeRudolphinae)共收录1005颗恒星(包括第谷的777颗和开普勒补充的228颗)。

3.3行星和彗星观测

赫维留对五大行星均有观测记录。1661年水星凌日,他对此作了详细观察,给出了水星大小、轨道倾斜角等数值,并发现《鲁道夫星表》在预测凌日发生的时间上存在较大误差。他把这些观测结果总结在其1662年出版的《水星凌日》(MercuriusInSoleVisusGedani)一书中。

他观测了水星、金星和火星的相位,观察到了木星表面上的暗斑和条纹,推测木星自转周期远长于一个月。还观察了木星的四颗伽利略卫星,给出了它们的直径。对于土星,赫维留认为,它是由一个球形和两个月状天体所组成,由此来解释在目视观测中土星所呈现的变化多端的形状,并将这一理论发表在1665年出版的《论土星的真实形状》(Dissertatio,DeNativaSaturniFacie)一书中。另外,他还对土星的卫星进行了观测,并给出了其与土星之间的距离。

赫维留对彗星颇有兴趣,对它们作了极其仔细的观测,并将其结果总结在《彗星导览》(ProdromusCometicus)、《彗星研究》(DescriptioCometae)和《彗星图》(Cometographia)三本着作中。其中最为著名的是《彗星图》,该书于1668年出版,厚达近1000页,赫维留不但在书中标出了他所观测的彗星在天球上的移动轨迹,并由此推测彗星的运动轨迹是抛物线,而且还绘制了单个彗星的图谱,这些图谱详尽记录了彗核和彗尾的外观、形状、大小、长度等细节,其高超的绘画技艺在此又派上了用场。图3展示的是该书的卷首插图。左边是亚里士多德,手里拿着的图表明他的观点,即彗星游走于月球和地球之间。右边是开普勒,认为彗星是沿着直线运动的。中间坐着的则是赫维留,他与前两者的观点都不一样,认为彗星以抛物线轨迹绕日运行。

3.4仪器制造

同第谷一样,赫维留也是一位出色的天文仪器制造家。他独立于荷兰物理学家和天文学家克里斯蒂安·惠更斯(ChristiaanHuygens),发明了精确到秒单位的摆钟。当时,望远镜刚刚兴起不久(伽利略于1609年第一次将望远镜用于天文观测),为了便于科学研究,赫维留亲自磨制镜片制造望远镜,由于当时镜片磨制技术有限,导致望远镜在实际观测中产生很大像差,不能得到满意结果。为减小观测误差,赫维留采用了通过加长物镜焦距来弥补镜片不足的方法,为此他甚至制造了焦距四十多米的超长望远镜。

赫维留的老师克鲁格曾试图制造过半径1.5米的水平式四分仪,但没有完成,1644年,格但斯克市把此遗物托付予赫维留,后者将其完成。随后,他又制成了半径分别为1.8米和2.4米的木制六分仪。后来,他又改用黄铜作为材料制作了类似器具。四分仪和六分仪是赫维留最为常用的天文仪器,前者用来测量星体相对于地平线的高度,后者用来测量两个星体之间的角距离。

赫维留建有自己的天文台,并将其称为星堡(第谷也将自己的天文台称为星堡)。在那里,赫维留不但安置了各种天文仪器,而且还建造了工房、印刷所、图书馆等设施,其先进程度在当时的欧洲堪称第一,甚至连当时波兰和法国的国王也慕名前来参观。直到17世纪70年代巴黎和格林尼治天文台建立之前,赫维留天文台始终保持着欧洲领先地位。

1673年,赫维留出版了著名的《天文仪器上卷》(MachinaeCoelestisParsPrior),对其所使用的天文仪器(测量仪、钟、望远镜)和天文台进行了详细描述。他在书中宣称,肉眼观测比使用望远镜更加精确。事实上,赫维留一直对望远镜持保留态度,只将其限于对月球、太阳和行星的观测,而他的其他观测活动则主要靠肉眼(借助四分仪和六分仪)来完成。这引起了以罗伯特·胡克(RobertHooke)为首的一些学者的不满,因为胡克刚刚研发了具有瞄准功能的带十字叉丝的望远镜,贬低望远镜就是贬低他的发明功劳。胡克挑衅般地指责赫维留的观测方法既老掉牙也不准确。而当时英国皇家天文学家约翰·弗拉姆斯蒂德则表示,赫维留的肉眼观测精度不亚于那些使用望远镜得到的结果。一场学术论战随即爆发,双方各不相让。为平息这场论战,皇家学会于1679年5月特意派埃德蒙德·哈雷(EdmondHalley)前往格但斯克去探个究竟。哈雷花了数星期时间,将其用望远镜瞄准具观测到的数据与赫维留的肉眼观测数据作对比,最后得出结论,后者的精确程度的确不亚于前者。数月后,哈雷将这一调查结果发表在哲学学报上,这无疑是对赫维留精湛的观测技术的极大褒奖。

3.5星图绘制

赫维留对天文的另一重大贡献是绘制了《赫维留星图》(FirmamentumSobiescianum),它与《拜耳星图》(Uranometria)、《波德星图》(Uranographia)和《弗拉姆斯蒂德星图》(AtlasCoelestis)并称为欧洲四大古典星图。此星图同赫维留的星表一起出现在《天文导览》一书中,包括两幅南北半天球图以及54幅星座图,总共73个星座。其中,北半天球图直径为46.5厘米,上面的大部分星体位置由赫维留亲自测定。而南半天球图上的星体位置则是参考了哈雷的数据。其余的54幅图则精细地绘制了各个星座并标明了其所在天区的星体。在此,赫维留仍旧采用了黄道坐标系而非更为先进的赤道坐标系,且未给恒星标注字母,星体位置也是左右镜像的,这些都限制了该星图的实际应用。尽管如此,赫维留星图的精确性与细致性的特点影响了此后的诸多星图绘制者,在西方古典星图领域可谓影响深远。20世纪60年代和70年代,赫维留的星图曾被分别翻译成俄文和日文出版。

另外需要指出的是,赫维留在绘制星图过程中,创建了一些新的星座,其中有7个得以沿用至今,它们分别是六分仪座(为感谢该仪器对他的帮助)、盾牌座(为感谢支持他的波兰国王索比斯基,后者于1683年打败了围困维也纳的土耳其军队)、猎犬座、天猫座、小狮座、狐狸座和蝎虎座。

4.晚年的不幸和万幸

赫维留68岁时,即1679年,不幸的事情发生了。这年的9月26日,在赫维留外出之际,他的天文台发生了重大火灾(据说是因为他解雇了一名员工而遭到后者的纵火报复),诸多珍贵的仪器、着作和尚未发表的手稿因此被毁。这对赫维留来说无疑是一场巨大的灾难。好在他得到了各方朋友的同情与赞助,其中包括法国和波兰国王。他很快将天文台重新修好,再次投入到观测研究之中。在此,他的第二任妻子(第一任妻子在1662年去世)伊丽莎白(ElisabethaKoopman)对其在事业上给予了极大的支持(受赫维留影响,伊丽莎白对天文也有极大兴趣),同他一起观测记录,并将结果写在1685年出版的《危机之年》(AnnusClimactericus)一书中。1687年1月28日,正好在76岁生日之际,赫维留在格但斯克去世。他死后,多亏伊丽莎白将其尚未出版的手稿加以整理,并于1690年正式出版,这就是前文提到的《天文导览》,赫维留星表和星图均在其中。

5.结语

今天,赫维留依旧是格但斯克市的象征之一。在其老市政厅前,树立着一座赫维留手持六分仪观测星空的雕像(图4)。正对着他的是一面绘着赫维留星图的墙壁(图5)。在老市政厅里的墙上,挂着一块赫维留纪念像(图6)。

赫维留从一个爱好天文的少年到最终成为名垂千古的伟大学者,他将一生中的大部分时间都献给了天文事业。赫维留不但详细观测了太阳、月球、行星、恒星、彗星等诸多天体,而且还自己发明和制作天文仪器,并绘制编撰星图和星表,不愧是继第谷之后在古典观测天文学领域最为杰出的集大成者。他给后人留下的那些不朽之作,将作为灿烂的里程碑永远矗立在人类探索自然和宇宙的宏伟历程中。寂静的夜晚,当我们再次抬头仰望那深邃浩渺的星空时,请不要忘记这位成就卓越的伟大学者。

天文学课程论文最新(10篇)

天文学课程论文最新第8篇(全文5134字)

一水晶球体系从形成到成为钦定

1.水晶球体系的形成。

同心天球体系的概念可以追溯到古希腊的Parmenides,甚至更早的Pythagoras。〔1〕〔2〕但真正建立起可以定量描述天体运动的体系是Eudoxus,他的工作在文〔2〕中保存了一个梗概,较详细的内容则见于公元六世纪时Simplicius对亚里士多德(Aristotle)《论天》一书所作的注释中。Eudoxus采用一套以地球为中心的同心球组,通过各球转轴的不同取向以及转速(皆匀速)和转向的不同组合来描述天体视运动。这一体系的建立在小轮理论的奠基人Apollonius之前百余年,比托勒密(Ptolemy)早四个世纪以上。后来小轮理论大行于世,Eudoxus体系遂湮没无闻。直到十九世纪才有Schiaparelli作了系统研究〔3〕,发现Eudoxus体系已能描述行星的顺、留、逆等视运动,其中对土星、木星很成功,水星亦尚可,金星很差,火星则完全失败。有的学者持论稍严,认为只有土、木令人满意。〔4〕

Eudoxus并未提出水晶球的概念。一般认为他只是用几何方法来表示和计算天象,不过这个结论是从Aristotle和Simplieius著作中的第二手材料得出的,由于Eudoxus原著皆已佚失,第一手材料不可得。

Callippus对Eudoxus体系作过一些改进,而Aristotle在两人工作的基础上建立了水晶球体系。他的发展大致可归结为三方面:

首先,他把Eudoxus假想的球层变为实体,并认为诸球层皆由不生不灭、完全透明、硬不可人的物质构成,水晶球之名即由此而来。日月行星和恒星则附着于各自的球层上被携带着运转,整个宇宙是有限而封闭的,月球轨道以上的部分万古不变。这意味着新星爆发、彗星、流星等天象只能是大气层中的现象。

第二,Aristotle把Eudoxus原来各自独立转动的诸球变成一个整体,其转动皆由最外层的天球传递下来。不过我们发现,在Aristotle原著中并没有宗动天这一球层。他的安排是:“第一天为恒星天……恒星天为总动天”,并阐述说:“第一原理或基本实是创作第一级单纯永恒运动,而自己绝不运动,也不附带地运动。……又因为我们见到了所说不动原始本体所创作的宇宙单纯空间运动以外,还有其他空间运动——如行星运动——那也是永恒的。”〔5〕这段话并不难理解,“不动原始本体所创作的宇宙单纯空间运动”即指恒星天球的周日运动,由此带动其他天球运动。可见恒星天球之上的宗动天当是后人所加,这一点值得注意。

第三,由于各天球不再是独立转动,他不得不引入一系列“平衡天球”来抵消上一层天球的运动,“而使每一天球下层诸行星得以回复其位置”〔6〕。不过平衡天球为何能反转,他未说明。

2.托勒密与水晶球体系。

把托勒密(Ptolemy)的名字和水晶球体系连在一起,这在国内外著作中都很常见,但这样做是有问题的。在《至大论》中,我们没有发现任何水晶球的观念。他在全书一开头就表示他的研究将用几何表示(geometricaldemonstrations)之法进行。在开始讨论行星运动时他说得更明白:“我们的问题是表示五大行星和日、月的所有视差数——用规则的圆周运动所生成。”〔7〕他把本轮、偏心圆等视为几何表示,或称为“圆周假说的方式”。显然,他心目中并无任何实体天球,而只是一些假想的空中轨迹。

Ptolemy另一部著作《行星假说》在希腊文手稿中仅保存下前一部分,但在九世纪的阿拉伯译本中却有全璧。阿文本中的后一部分通常被称为“假说Ⅱ”。其中出现了许多实体的球,但又与Aristole的体系不同。这里每个天体有自己的一个厚球层,各厚层之间又有“以太壳层”(ethershell),厚层中则是实体的偏心薄球壳,天体即附于其上。这里的偏心球壳实际上起了《至大论》中本轮的作用。〔8〕不过“假说Ⅱ”在欧洲失传已久,阿文译本直到1967年才首次出版;况且其中虽有实体球壳,但与水晶球体系大不相同,因此Ptolemy的名字何以会与水晶球体系连在一起,和“假说Ⅱ”并无直接关系。其原因应该另外寻找。

然而,“假说Ⅱ”对中世纪阿拉伯天文学的影响却不容忽视。阿拉伯天文学家曾提出过许多类似水晶球的体系。比较重要的有A1Bat-tani,他主张Aristotle的体系。〔9〕稍后有Ibnal-Haythan,他对《至大论》中的几何表示之法大为不满,试图寻求物理机制,因而主张类似“假说Ⅱ”中的体系。〔10〕Nasirad-DinAlTusi则主张一种由许多大小不同的球相互外切或内切组成的体系,各球以不同的方向和速度旋转,他自认为这是前人未得之秘。〔11〕此外还有A1Kazwini、Abu’lFaraj和AlJagmini等,都详细讨论过水晶球体系。

“假说Ⅱ”既与《至大论》大异其趣,偏偏又只保存在阿拉伯译本中,而类似的体系在阿拉伯天文学中又如此流行,因此有人怀疑“假说Ⅱ”中可能杂有阿拉伯天文学家的工作。〔12〕这是有道理的。

3.水晶球体系成为教条。

水晶球体系所以会成为教会钦定的教条,主要和AlbertusMagnus及T.Aquinas师徒两人的工作有关。Albertus以Aristotle庞大的哲学体系为基础,创立丁经院哲学体系。〔13〕Aquinas则几乎把Aristotle学说全盘与神学相结合。他也写了一部对《论天》的注释,巧妙地将Aristotle的天文学说与《圣经》一致起来。〔14〕并特别引用Ptolemy的著作来证明地心和地静之说。〔15〕

这里必须强调指出,Aristotle的学说直到13世纪初仍被教会视为异端,多次下令禁止在大学里讲授。此后情况才逐渐改变〔16〕〔17〕,1323年教皇宣布Aquinas为“圣徒”,标志着他的学说得到了教会官方的认可,这也正是Aristotle学说——包括水晶球体系在内——成为钦定之时。这一点在许多哲学史著作中都是很清楚的,但在科学史论著中却广泛流行着“亚里士多德和托勒密僵硬的同心水晶球概念,曾束缚欧洲天文学思想一千多年”〔18〕之类的说法,而且递相祖述,这种说法有两方面的问题。

首先,在13世纪之前Aristotle和Ptolemy的学说与其他古希腊学说一样,在欧洲还鲜有人知,根本谈不到“束缚”欧洲的天文学思想。即使从14世纪获得钦定地位算起,能起束缚作用的时间也不到四百年。其次,水晶球体系是Aristotle的学说,虽然Aquinas兼采了Ptolemy的著作,但若因此就把水晶球的账摊一份(甚至全部)到Ptolemy头上,至少是过于简单化了。特别是在科学史论著中,更以区分清楚为妥。

事实上水晶球体系与Ptolemy的几何表示是难以相洽的。前者天球层层相接,毫无间隙;而后者是天体自身运动,在空间中划出轨迹。C.Purbach在1473年已经明确指出这一点,为了调和两者,他主张一种中空的水晶球壳,其内可容纳小轮。〔19〕然而理论上的不相洽并不妨碍二者在实际上共存,天文学家可以一面在总的宇宙图式上接受水晶球体系,一面用本轮均轮体系来解决具体的天文学计算问题,这种现象在水晶哉他蔡帚钵袖抛春少前相当普谝。

二几位著名近代天文学家对水晶球体系的态度

1.哥白尼在这个问题上的态度。

最近有人提出,哥白尼(Copernicus)主张以太阳为中心的—同心水晶球体系。不仅各行星皆由实体天球携载,而且诸天球层层相接,充满行星际空间〔20〕,理由是Copernicus那张著名的宇宙模式图〔21〕多了一个环。我们认为这一说法未免穿凿附会,很难成立。理由有四:

①由于行星与太阳的距离有一个变动范围,因此图中两环之间的空间完全可以理解为行星的活动范围;又因该图只是示意图,也就没有必要给出精确的比例。②如果对图的解释有歧义,那显然原书的文字论述更重要,但Copernicus在这一章中根本未谈到过实体天球,文〔21〕全书的其他部分也没有任何这类主张。相反他一直使用“轨道”(orbitalcircles)一词,还谈到“金星与火星轨道之间的空间”〔22〕,这些都是与实体密接天球完全不相容的概念。Rosen也曾指出,Copernicus即使使用“sphaeta”、“orbit”等词,多数情况下也是指二维圆环,即天体的运行轨道。〔23〕③Copernicus既然主张日心地动,地球已成行星之一,那么如果设想既有公转又有自转的地球是被一个实体水晶球所携载,无论如何无法与人们的直接感觉相一致。除非认为地球及其上的万物都被“浇铸”于水晶球体之内,如同琥珀中的小虫那样才行。④Copemicus在《要释》中说得更明确:“Callipus和Eudoxus力图用同心球来解决这个问题,但他们未能解释行星的所有运动,……因此看来还是使用大多数学者最后都接受了的偏心圆和本轮体系为好。”〔24〕

2.第谷对水晶球体系的打击。

第谷(Tycho)并不主张日心地动之说,但他却给水晶球体系以致命打击。1572年超新星爆发,他用各种方法反复观测,断定该星必在恒星空间,而按水晶球体系的理论,这种现象只能出现在月球下界。不过翌年他发表其观测工作时,尚未与水晶球体系决裂。〔25〕1577年又出现大彗星,TYcho的观测无可怀疑地表明:该彗星在行星际空间,且穿行于诸行星轨道之间。于是他断然抛弃了水晶球,发表了他自己的宇宙新体系(1588)。他明确指出:“天空中确实没有任何球体。……当然,几乎所有古代和许多当今的哲学家都确切无疑地认为天由坚不可人之物造成,分为许多球层,而天体则附着其上,随这些球运转。但这种观点与事实不符。”〔26〕Tycho反对水晶球的三条主要理由后来开普勒(Kepler)曾概述如下:①彗星穿行于诸行星轨道间,故行星际空间不可能有实体天球。②如真有层层水晶球,则必有巨大折射,天象将大异于实际所见者。③火星轨道与太阳轨道相割(这是Tycho体系的特点),表明没有实体天球。〔27〕

Tvcho对超新星和彗星的观测是那个时代对水晶球教条最有力的打击。对于其他反对理由,水晶球捍卫者皆可找到遁词,比如折射问题,可以推说天界物质未必服从地上的光学定律;火日轨道相割问题可以用否认Tycho体系的正确性来回避;对日心地动说与水晶球的不相容也可仿此处理。但对于Tycho提供的观测事实,就很难回避。S.Chiaramonti为此专门写了两部著作(1621,1628),竟想釜底抽薪,直接否认Tycho的观测结果。

3。开普勒、伽里略和其他人。

开普勒(Kepler)断然否认有实体天球,并认为行星际空间“除了以太再无别物”〔28〕。伽里略(Galileo)除了嘲笑和挖苦水晶球体系的捍卫者,还力斥Chiaramonti著作之谬。〔29〕此两人皆力主日心地动之说,他们对水晶球体系的态度无疑是Copernicus学说与水晶球体系不相容的有力旁证之一。

这一时期除了上述四位最重要的天文学家外,还有不少著名人物也反对水晶球体系。T.Campanella借太阳城人之口表示“他们痛恨亚里士多德……并且根据一些反常的现象提出了许多证据来反对世界永恒存在的说法”〔30〕。C.Bruno和W.Gilbert的态度更为明确,已有人注意到了。〔31〕

三水晶球体系在中国传播的情况

关于水晶球体系在中国的情况,李约瑟的说法影响很大。他认为“耶稣会传教士带去的世界图式是托勒密-亚里士多德的封闭的地心说;这种学说认为,宇宙是由许多以地球为中心的同心固体水晶球构咸的”,又说“存宇宙结构问题亡,传教士们硬要把一种基本上错误的图式(固体水晶球说)强加给一种基本上正确的图式(这种图式来自古宣夜说,认为星辰浮于无限的太空)”〔32〕。他的说法曾被许多文章和著作引用,但是我们不得不指出,李约瑟的说法至少不很全面。

众所周知,耶稣会土在中国所传播的西方天文学知识,主要汇集在《崇祯历书》中。这部百余卷的巨著于1634年修成之后,很快风靡了中国的天文界,成为中国天文学家研究西方天文学最重要的材料。1645年,又由清政府以《西洋新法历书》之名正式颁行。此书采用Tyeho的宇宙体系,不仅没有采用任何固体水晶球的说法,恰恰相反,它明确否定了水晶球体系:问:古者诸家日天体为坚为实为彻照,今法火星圈割太阳之圈,得非明背昔贤之成法乎?曰:自古以来测候所急,追天为本,必所造之法与密测所得略无乖爽,乃为正法。……是以舍古从今,良非自作聪明,妄违迪哲。〔33〕

必须注意,这段论述的作者罗雅谷(JacobusRho)和汤若望(J.AdamShallvonBell)皆为耶稣会士,这又从另一侧面反映出天主教会钦定的水晶球教条在当时失败的情形——连教会自己的天文学家也抛弃这个学说了。

虽然早期来华耶稣会土中利玛窦(MatthaeusRicci)和阳玛诺(EmmanuelDiaz)两人曾在他们的宣传介绍性小册子中传播过水晶球之说〔34〕〔35〕,但其影响与《崇祯历书》相比是微不足道的。况且他们仅限于谈论宇宙图式,而这并不能解决任何具体的天文学问题,因此也不被中国天文学家所重视。

清代中国天文学家对各层天球或轨道是否为实体有过热烈讨论。王锡阐主张“若五星本天则各自为实体”〔36〕,梅文鼎则认为“故惟七政各有本天以为之带动,斯能常行于黄道而不失其恒;惟七政之在本天又能自动于本所,斯可以施诸小轮而不碍”〔37〕。这与Purbach的折衷想法颇相似。王、梅两人是否受过水晶球理论的影响,目前还缺乏足够的史料来断言。何况当时“本天”一词往往被用来指二维圆环,即天体轨道。而更多的天文学家认为连这样的二维轨道也非实体。焦循说:“可知诸论皆以实测而设之。非天之真有诸轮也。”〔38〕江永也承认非实体:“则在天虽无轮之形质,而有轮之神理,虽谓之实有焉可也。”〔39〕阮元力言实体论之谬:“此盖假设形象,以明均数之加减而已,而无识之徒……遂误认苍苍者天果有如是诸轮者,斯真大惑矣!”〔40〕盛百二也说:“旧说诸天重重包裹皆为实体,乃细测火星能割人日天,金水二星又时在日上,时在日下,使本天皆为实体,焉能出人无碍?”〔41〕值得注意的是,焦循等人皆已领悟了Ptolemy“几何表示”的思想。这一思想可以上溯到Eudoxus,而Copernicus、Tycho,直到Kepler,皆一脉相承。既然认为二维轨道也非实体,当然更不会接受三维的实体天球。事实上,几乎所有的清代天文学家都接受Tycho宇宙体系,或是经过他们自己改进的Tycho体系,而不是水晶球体系。

Eudoxus的同心球体系被认为是数学假设,其本质与后来的小轮体系并无不同,而古希腊数理天文学的传统即发端于此。Aristotle将其发展为水晶球体系,却在很大程度上出于哲学思辨。但他或许带有寻求天体运动物理机制的积极倾向,这种倾向后来一度在阿拉伯天文学中有所加强。当水晶球体系在14世纪成为教条之后,就束缚了天文学的发展,以至Galileo等人不得不付出沉重代价来冲破它。举例来说,超新星、彗星和太阳黑子,本来无论地心说还是日心说都可以接受,但在水晶球体系中就不能容忍。水晶球体系传人中国之后,如果曾起过某些作用的话,同样也是消极的。比如王锡阐,他主张天球实体论,并由此认为火星与太阳轨道相割为不可能,因而试图修改Tycho体系。如果他是受了水晶球理论的影响,那么这种影响看来只是引起了他思路的混乱,因为他对Tycho宇宙体系的修改是不成功的。〔42〕

参考文献

〔1〕J.L.E.Dreyer,AHistoryofAstronomyfromThalestoKepler,Dover,(1953),P.21

〔2〕Aristotle:《形而上学》,13页,吴寿彭译,商务印书馆,1983。

〔3〕Schiaparelli,IesfereomocentrichediEudosso,diCallippoediAristotle,Milano(1875).

〔4〕ONeugebauer,AHistoryOfAncientMathematicalAstronomy,Springer-Verlag(1975),IVCl,2B.

〔5〕Aristotle,〔2〕,P·249-250.

〔6〕Aristotle,〔2〕,P.251.

〔7〕Ptolemy,Almagest,IX2,Great-BooksOftheWesternWorld,EncyclopaediaBritannica,1980,16,P.270.

〔8〕Neugebauer,〔4〕,VB7,7.

〔9〕Dreyer,〔1〕,P.257.

〔10〕N.M.Swerdlow,O.Neugebauer,MathematicalAstronomyinCopernicus’sDeRevolutionibus,SpringerVerlag.1984,P.44.

〔11〕Dreyer,〔1〕,P.268.

〔12〕Neugebauer,〔4〕,VB7,6.

〔13〕F.ThiUy:《西方哲学史》,葛力译,218页,商务印书馆,1975.

〔14〕Dreyer,〔1〕,P.232.

〔15〕Ptolemy,〔7〕,15,17.

〔16〕W.C.Dampier:《科学史及其与哲学和宗教的关系》,李珩译,138页,商务印书馆,1975。

〔17〕B.Russell:《西方哲学史》,何兆武等译,550页.商备印书馆,1982。

〔18〕李约瑟:《中国科学技术史》第四卷,中译本,115页,科学出版社,1975。

〔19〕A.Berry,AShortHistoryofAstronomy,Dover,(1961),Ch.Ⅲ,68.

〔20〕Swerdlow,Neugegauer,〔10〕,P.56,P.474.

〔21〕Copernicus,DeRevolutionibus,110,GreatBooksOftheWestern,(1980),16,P.526.又,该图手稿影印件可见〔20〕,572页。

〔22〕Copernicus,〔21〕,110.

〔23〕E.Rosen,3CopernicanTreatises,Dover,(1959)P.11.

〔24〕Copernicus,Commentariolus,〔23〕,P.57.

〔25〕Tycho,DeNovastella,H.Shapley,H.E.Howarth,ASourceBookinAstronomy,Mc-Graw-Hill,(1929)P.13—19.

〔26〕Tycho,OperaOmnia,ed.Dreyer,Copehagen,1913—1929,Ⅳ,P~222.Quotedby〔23〕,P.12.

〔27〕Kepler,EpitomAstrohomiaeCopernicanae,411,GreatBooksOftheWesternWorld,EncyclopaediaBritannice,(1980),16,P·856--857.

〔28〕Kepler,〔27〕,P.857.

〔29〕Galileo,Dialogo,TheUniv.OfChicagoPress,1957.

〔30〕T.CampaneHa:《太阳城》,陈大维等译,商务印书馆,1982。

〔31〕李约瑟,〔18〕,P.647-648。

〔32〕李约瑟,〔18〕,P.643-646。

〔33〕《西洋新法历书》:五纬历指卷一。

〔34〕利玛窦:《乾坤体义》卷上。

〔35〕阳玛诺:《天问略》。

〔36〕王锡阐:《五星行度解》。

〔37〕梅文鼎:《历学疑问》卷一。

〔38〕焦循:《释轮》卷上。

〔39〕江永:《数学》卷六。

〔40〕阮元:《畴人传》卷四十六。

〔41〕盛百二:《尚书释天》卷一。

〔42〕江晓原:《科技史文集》,《天文学史专辑(4)》。

天文学课程论文最新第9篇(全文6047字)

成吉思汗征战建立起横跨欧亚大陆的大帝国。在他身后,据有中国的元朝与欧、亚诸汗国先后并立,故各国间文化交流颇为活跃。关于这一时期中国天文学与伊斯兰天文学之间的接触,中外学者曾有所论述。总的来说给人们造成的印象是此种接触确实存在,但其中不少具体问题尚缺乏明确的线索和结论。本文大体按照年代顺序,对较为重要的六个问题略加考述,以求对这一时期华夏与伊斯兰天文学之间的交流接触有一更为全面和清晰的认识。

一耶律楚材与丘处机在中亚的天文活动

有关耶律楚材与丘处机这两位著名人物在中亚的天文学活动的记载,是颇为重要的背景材料。它们表明,元代中国与伊斯兰天文学的接触,在忽必烈时代的高潮到来之前,早巳非常活跃地进行着。

耶律楚材(1189---1243)本为契丹人,辽朝皇室的直系子孙,先仕于金,后应召至蒙古,于1219年作为成吉思汗的星占学和医学顾问,随大军远征西域。在西征途中,他与伊斯兰天文学家就月蚀问题发生争论,《元史·耶律楚材传》载其事云:“西域历人奏:五月望,夜月当蚀;楚材曰否,卒不蚀。明年十月,楚材言月当蚀;西域人曰不蚀,至期果蚀八分。”

此事发生于成吉思汗出发西征之第二年即1220年,这可由《元史·历志一》中“庚辰岁,太祖西征,五月望,月蚀不效……”的记载推断出来。〔1〕发生的地点为今乌兹别克共和国境内的撒马尔罕(Smarkand)〔2〕,这可由耶律楚材自撰的西行记录《西游录》(向达校注,中华书局1981年版)中的行踪推断出来。

耶律楚材在中国传统天文学方面造诣颇深。元初承用金代《大明历》,不久误差屡现,上述1220年五月“月蚀不效”即为一例。为此耶律楚材作《西征庚午元历》(载于《元史·历志》之五至六),其中首次处理了因地理经度之差造成的时间差,这或许可以看成西方天文学方法在中国传统天文体系中的影响之一例——因为地理经度差与时间差的问题在古希腊天文学中早已能够处理,在与古希腊天文学一脉相承的伊斯兰天文学中也是如此。

据另外的文献记载,耶律楚材本人也通晓伊斯兰历法。元陶宗仪《南村辍耕录》卷九“麻答把历”条云:“耶律文正工于星历、筮卜、杂算、内算、音律、儒释。异国之书,无不通究。尝言西域历五星密于中国,乃作《麻答把历》,盖回鹘历名也。”联系到耶律楚材在与“西域历人”两次争论比试中都占上风一事,可以推想他对中国传统的天文学方法和伊斯兰天文学方法都有了解,故能知己知彼,稳操胜算。

约略与耶律楚材随成吉思汗西征的同时,另一位著名的历史人物丘处机(1148—1227)也正在他的中亚之行途中。他是奉召前去为成吉思汗讲道的。丘处机于1221年岁末到达撒马尔罕,几乎可以说与耶律楚材接踵而至。丘处机在该城与当地天文学家讨论了这年五月发生的日偏食(公历5月23日),《长春真人西游记》卷上载其事云:

至邪米思干(按即撒马尔罕)……时有算历·者在旁,师(按指丘处机)因问五月朔日食事。其人云:此中辰时食至六分止。师曰:前在陆局河时,午刻见其食既;又西南至金山,人言巳时食至七分。

此三处所见各不同。……以今料之,盖当其下即见其食既,在旁者则千里渐殊耳。正如以扇翳灯,扇影所及,无复光明,其旁渐远,则灯光渐多矣。

丘处机此时已73岁高龄,在万里征途中仍不忘考察天文学问题,足见他在这方面兴趣之大。他对日食因地理位置不同而可见到不同食分的解释和比喻,也完全正确。

耶律楚材与丘处机都在撒马尔罕与当地天文学家接触和交流,这一事实看来并非偶然。150年之后,此地成为新兴的帖木儿王朝的首都,到乌鲁伯格(UlughBeg)即位时,此地建起了规模宏大的天文台(1420),乌鲁伯格亲自主持其事,通过观测,编算出著名的《乌鲁伯格天文表》——其中包括西方天文学史上自托勒密(Ptolemy)之后千余年间第一份独立的恒星表。〔3〕故撒马尔罕当地,似乎长期存在着很强的天文学传统。

二马拉盖天文台上的中国学者是谁

公元13世纪中叶,成吉思汗之孙旭烈兀(Hulagu,或作Hulegu)大举西征,于1258年攻陷巴格达,阿拔斯朝的哈里发政权崩溃,伊儿汗王朝勃然兴起。在著名伊斯兰学者纳速拉丁·图思(Nasiral-Dinal-Tusi)的襄助之下,旭烈兀于武功极盛后大兴文治。伊儿汗朝的首都马拉盖(Maragha,今伊朗西北部大不里士城南)建起了当时世界第一流的天文台(1259),设备精良,规模宏大,号称藏书四十余万卷。马拉盖天文台一度成为伊斯兰世界的学术中心,吸引了世界各国的学者前去从事研究工作。

被誉为“科学史之父”的萨顿博士(C.Sarton)在他的《科学史导论》中提出,马拉盖天文台上曾有一位中国学者参加工作。〔4〕此后这一话题常被西方学者提起。但这位中国学者的姓名身世至今未能考证出来。

萨顿之说,实出于多桑(C.M.D’Ohsson)《蒙古史》,此书中说曾有中国天文学家随旭烈兀至波斯,对马拉盖天文台上的中国学者则仅记下其姓名音译(Fao-moun-dji)。〔5〕由于此人身世无法确知,其姓名究竟原是哪三个汉字也就只能依据译音推测,比如李约瑟著作中采用“傅孟吉”三字。〔6〕

再追溯上去,多桑之说又是根据一部波斯文的编年史《达人的花园》而来。此书成于1317年,共分九卷,其八为《中国史》。书中有如下一段记载:

直到旭烈兀时代,他们(中国)的学者和天文家才随同他一同来到此地(伊朗)。其中号称“先生”的屠密迟,学者纳速拉丁·图思奉旭烈兀命编《伊儿汗天文表》时曾从他学习中国的天文推步之术。又,当伊斯兰君主合赞汗(GhazanMahmadKhan)命令纂辑(被赞赏的合赞史》时,拉施德丁(Rashidal-Din)丞相招致中国学者名李大迟及倪克孙,他们两人都深通医学、天文及历史,而且从中国随身带来各种这类书籍,并讲述中国纪年,年数及甲子是不确定的。〔7〕

关于马拉盖天文台的中国学者,上面这段记载是现在所能找到的最早史料。“屠密迟”、“李大迟”、“倪克孙”都是根据波斯文音译悬拟的汉文姓名,具体为何人无法考知。“屠密迟”当即前文的“傅孟吉”——编成《伊儿汗天文表》正是纳速拉丁·图思在马拉盖天文台所完成的最重要业绩。由此还可知《伊儿汗天文表》(又称《伊儿汗历数书》,波斯文原名作Zij11-Khani)中有着中国天文学家的重要贡献在内。

最后还可知,由于异国文字的辗转拼写,人名发音严重失真。要确切考证出“屠密迟”或“傅孟吉”究竟是谁,恐怕只能依赖汉文新史料的发现。

三双语的天文学文献

李约瑟曾引用瓦格纳(Wagner)的记述,谈到昔日保存在俄国著名的普耳科沃天文台的两份手抄本天文学文献。两份抄本的内容是一样的,皆为从1204年开始的日、月、五大行星运行表,写就年代约在1261年。值得注意的是两份抄本一份为阿拉伯文(波斯文),一份则为汉文。1261年是忽必烈即位的第二年,李约瑟猜测这两份抄本可能是札马鲁丁(详下文)和郭守敬合作的遗物。但因普耳科沃天文台在第二次世界大战中曾遭焚毁,李氏只能“希望这些手抄本不致成为灰烬”〔8〕。

在此之前,萨顿曾报道了另一件这时期的双语天文学文献。这是由伊斯兰天文学家撒马尔罕第(AtaibnAhmadal-Samarqandi)于1362年为元朝一王子撰写的天文学著作,其中包括月球运动表。手稿原件现存巴黎,萨顿还发表了该件的部分书影,从中可见此件阿拉伯正文旁附有蒙文旁注,标题页则有汉文。〔9〕此元朝的蒙古王子据说是成吉思汗和忽必烈的直系后裔阿刺忒纳。〔10〕这件文献中的天文学内容则尚未见专题研究问世。

四札马鲁丁以及他送来的七件西域仪器

元世祖忽必烈登位后第七年(1267),伊斯兰天文学家札马鲁丁进献西域天文仪器七件。七仪的原名音译、意译、形制用途等皆载于《元史·天文志》,曾引起中外学者极大的研究兴趣。由于七仪实物早已不存,故对于各仪的性质用途等,学者们的意见并不完全一致。兹简述七仪原名音译、意译(据《元史·天文志》)、哈特纳(W.Hartner)所定阿拉伯原文对音,并略述主要研究文献之结论,依次如下:

1.“咱秃哈刺吉(Dhatual-halaq-i),汉言混天仪也。”李约瑟认为是赤道式浑仪,中国学者认为应是黄道浑仪〔11〕,是古希腊天文学中的经典观测仪器。

2.“咱秃朔八台(Dhatu’sh-shu‘batai),汉言测验周天星曜之器也。”中外学者都倾向于认为即托勒密(Ptolemy)在《至大论》(Almagest)中所说的长尺(Organonparallacticon)。〔12〕

3.“鲁哈麻亦渺凹只(Rukhamah-i-mu‘—wajja),汉言春秋分晷影堂。”用来测求春、秋分准确时刻的仪器,与一座密闭的屋子(仅在屋脊正东西方向开有一缝)连成整体。

4.“鲁哈麻亦木思塔余(Rukhamah-i-mustawiya),汉言冬夏至晷影堂也。”测求冬、夏至准确时刻的仪器,与上仪相仿,也与一座屋子(屋脊正南北方向开缝)构成整体。

5.“苦来亦撒麻(Kura-i-sama’),汉言浑天图也。”中外学者皆无异议,即中国与西方古代都有的天球仪。

6.“苦来亦阿儿子(Kura-i-ard),汉言地理志也。”即地球仪,学者也无异议。

7.“兀速都儿刺(al-Ustulab),汉言定昼夜时刻之器也。”实即中世纪在阿拉伯世界与欧洲都十分流行的星盘(astrolabe)。

上述七仪中,第1、2、5、6皆为在古希腊天文学中即已成型并采用者,此后一直承传不绝,阿拉伯天文学家亦继承之;第3、4两种有着非常明显的阿拉伯特色;第7种星盘,古希腊已有之,但后来成为中世纪阿拉伯天文学的特色之一——阿拉伯匠师制造的精美星盘而久负盛名。如此渊源的七件仪器传人中土,意义当然非常重大。

札马鲁丁进献七仪之后四年,忽必烈下令在上都(今内蒙古多伦县东南境内)设立回回司天台(1271),并令札马鲁丁领导司天台的工作。及至元亡,明军占领上都,将回回司天台主要人员征召至南京为明朝服务,但是该台上的西域仪器下落,却迄今未见记载。由于元大都太史院的仪器都曾运至南京,故有的学者推测上都回回司天台的西域仪器也可能曾有过类似经历。但据笔者的看法,两座晷影堂以及长尺之类,搬运迁徙的可能性恐怕非常之小。

这位札马鲁丁是何许人,学者们迄今所知甚少。国内学者基本上倾向于接受李约瑟的判断,认为札马鲁丁原是马拉盖天文台上的天文学家,奉旭烈兀汗或其继承人之派,来为元世祖忽必烈(系旭烈兀汗之兄)效力的。〔13〕最近有一项研究则提出:札马鲁丁其人就是拉施特(即本文前面提到的“拉施德丁丞相”)《史集》(Jamial-Tawatikh)中所说的Jamalal-Din(札马刺丁),此人于1249—1252年间来到中土,效力于蒙哥帐下,后来转而为忽必烈服务,忽必烈登大汗之位后,又将札马鲁丁派回伊儿汗国,去马拉盖天文台参观学习,至1267年方始带着马拉盖天文台上的新成果(七件西域仪器,还有《万年历》)回到忽必烈宫廷(事见李迪撰《纳速拉丁与中国》,载《中国科技史料》11卷4期,1990)。

五回回司天台上的异域天文学书籍

上都的回回司天台,既与伊儿汗王朝的马拉盖天文台有亲缘关系,又由伊斯兰天文学家札马鲁丁领导,且专以进行伊斯兰天文学工作为任务,则它在伊斯兰天文学史上,无疑占有相当重要的地位——它可以视为马拉盖天文台与后来帖木儿王朝的撒马尔罕天文台之间的中途站。而它在历史上华夏天文学与伊斯兰天文学交流方面的重要地位,只要指出下面这件事就足以见其一斑:

至元十年(1273)闰六月十八日,太保传,奉圣旨:“回回、汉儿两个司天台,都交秘书监管者。”〔14〕

两个所持天文学体系完全不同的天文台,由同一个上级行政机关——秘书监来领导,这在世界天文学史上也是极为罕见(如果不是仅见的话)的有趣现象。

可惜的是,对于这样一座具有特殊地位和意义的天文台,我们今天所知的情况却非常有限。在这些有限的信息中,特别值得注意的是元代《秘书监志》中记载的一份藏书目录——这些书籍都曾收藏在回回司天台中,书目中天文数学部分共13种著作,兹录如下:1.兀忽列的《四擘算法段数》十五部。2.罕里速窟《允解算法段目》三部。3.撒唯那罕答昔牙《诸般算法段目并仪式》十七部。4.麦者思的《造司天仪式》十五部。5.阿堪《诀断诸般灾福》部。6.蓝木立《占卜法度》部。7.麻塔合立《灾福正义》部。8.海牙剔《穷历法段数》七部。9.呵些必牙《诸般算法》八部。10.《积尺诸家历》四十八部。11.速瓦里可瓦乞必《星纂》四部。12.撒那的阿刺忒《造浑仪香漏》八部。13.撒非那《诸般法度纂要》十二部。〔15〕这里的“部”大体上就是“卷”。第5、6、7三种的部数数目空缺;由“本台见合用经书一百九十五部”减去其余10种的部数总和,可知此三种书共有58"部”。

这些书是用什么文字写成的,尚未见明确记载。虽然不能完全排除它们是中文书籍的可能性,但笔者认为它们更可能是波斯文或阿拉伯文的;它们很有可能就是札马鲁丁从马拉盖天文台带来的。

由于上述书目中音译的人名和意译的书名都很难确切还原成原文,因此这13种著作的证认工作尚无多大进展。方豪认为第1种就是著名的欧几里得(Euclides)《几何原本》,“十五部”也恰与《几何原本》的15卷吻合(方豪《中西交通史》,岳麓书社1987年版),这个判断可信。还有人认为书目中第4种可能是托勒密(Ptolemy)《至大论》〔16〕,似不可信;因《造司天仪式》显然是讲天文仪器制造的,但《至大论》中并不讲仪器制造,况且《至大论》全书13卷,也与“十五部”之数不合。

六伊斯兰天文学对郭守敬及其仪器有无影响

在札马鲁丁进献七件西域仪器之后九年、上都回回司天台建成后五年、回回司天台和“汉儿司天台”奉旨同由秘书监领导之后三年,中国历史上最伟大的天文学家之一郭守敬,奉命为“汉儿司天台”设计和建造一批天文仪器,三年后完成(1276--1279)。这批仪器中颇多创新之意,如简仪、仰仪、正方案、门规几等。〔17〕由于郭守敬造仪器在札马鲁丁献西域仪器之后,所造各仪又多前此中国所未见者,因此很自然地产生了“郭守敬仪器是否曾受到伊斯兰天文学影响”的问题。

对此问题,国内学者主要的意见是否定的,认为札马鲁丁所献仪器“都没有和中国传统的天文学结合起来”,原因有二:一是这些黄道体系的仪器与中国的赤道体系传统不合;二是使用西域仪器所需的数字知识等未能一起传人。〔18〕国外学者也有持否定态度的,如M.约翰逊(Johnson)明确指出年天文仪器的设计者们拒绝利用他们所熟知的穆斯林技术”。〔19〕李约瑟对此问题的态度不明确。例如关于简仪是否受到阿拉伯影响,他既表示证据不足,却又说“从一切旁证看来,确实如此(受过影响)”。〔20〕但是这些旁证为何,他却没有给出。

笔者以为,就直接的层面而言,郭守敬的仪器中确实看不出伊斯兰天文学的影响,相反倒能清楚见到它们与中国传统天文仪器之间的一脉相传。对此可以给出一个非常有力的解释。前述回、汉两司天台同归秘书监领导这一点至关重要,因为这一事实无疑已将郭守敬与札马鲁丁以及他们各自领导的汉、回天文学家置于同行竞争的状况中。郭守敬既奉命另造天文仪器,他当然要尽量“拒绝”对手的影响,方能显出他与对手各擅胜场,以便更求超越对手;倘若他接受了伊斯兰仪器的影响,就会被对手指为步趋仿效,技不如人,则“汉儿司天台”在此竞争中将何以自立?

但是在另一方面,笔者又以为,就间接的层面而言,郭守敬似乎又受到了阿拉伯天文学的一些影响。此处姑先举两个例子以说明之。其一是简仪。简仪之创新,即在其“简”——它不再追求环组重叠,一仪多效,而改为每一环组测量一对天球坐标(简仪实际上是置于同一基座上的两个分立仪器:赤道经纬仪和地平经纬仪);这种一仪一效的风格,是欧洲天文仪器的传统风格,从札马鲁丁所献七仪到后来耶稣会士南怀仁(F.Verbiest)奉康熙帝之命所造六仪(今尚保存在北京古观象台),可看到这一风格。其二为高表。札马鲁丁七仪中有“冬夏至晷影堂”,其功能与中土古老的圭表一样,但精确度可以较高;郭守敬不屑学之,仍从传统的圭表上着手改进,他的办法是到河南登封去建造巨型的高表和量天尺(即巨型的圭表)。但是众所周知,“巨型化”正是阿拉伯天文仪器的特征风格之一。在上述两例中,一是由阿拉伯天文学所传递的欧洲风格,一是阿拉伯天文学本身所形成的风格,它们都可以视为伊斯兰天文学对郭守敬的间接影响——当然,在发现更为确实的证据前,笔者并不打算将上述看法许为定论。

以蒙古征服为契机,在欧亚大陆上所引发的东西方天文学交流,是一个远未获得充分研讨的课题。这场交流中的史实、遗迹、它的影响、意义等等,都是非常引人人胜的。我们迄今所知者,很可能仅是冰山之一角。

参考文献

〔1〕“太祖”原文误为“太宗”,但太宗在位之年并无庚辰之岁,故应从《历代天文律历等志汇编》(中华书局,1976)9册,3330页之校改。

〔2〕此城在汉文古籍中有多种音译,如“飒秣建”(《大唐西域记》)、“薛米思坚”(《元朝秘史》)、“邪米思干”(《长春真人西游记》)、“寻思干”(《西游录》)等,皆指同一城,即古之Semiscant之地也。

〔3〕托勒密的恒星表载于《至大论》中,此后西方的恒星表都只是在该表基础上作一些岁差改正之类的修订而得,故不是独立观测而得的。还有许多人认为托勒密的表也只是在他的前辈喜帕恰斯(Hipparchus)的恒星表上加以修订而成的。

〔4〕G.Sarton,IntroductiontotheHistoryOfScience,W.&W.,Baltimore,V01.2(1931),P,1005.

〔5〕D’Ohsson:《多桑蒙古史》,冯承钧译,下册,91页,中华书局,1962。

〔6〕李约瑟:《中国科学技术史》第一卷,226页,科学出版社一上海古籍出版社,1990。

〔7〕韩儒林编:《中国通史参考资料》古代部分第六册(元),258页,中华书局,1981。引用时对译音所用汉字作了个别调整。

〔8〕〔10〕李约瑟:《中国科学技术史)第四卷(实为原书第三卷),475页,科学出版社,1975。

〔9〕同〔4〕,V01.3(1947),P.1529.

〔11〕中国天文学史整理研究小组编:《中国天文学史》,200页,科学出版社,1981。

〔12〕参见Almagest,V,12;以及〔8〕,478页所提供的文献。

〔13〕同〔11〕,199页。

〔14〕王士点、商企翁编次:《秘书监志》,115页,浙江古籍出版社,1992。

〔15〕同〔14〕,129--130页。

〔16〕同〔11〕,214--215页。

〔17〕关于诸仪的简要记载见《元史·天文志》之一。又关于最引人注目的简仪、仰仪,可参见〔11〕,190--194页。

〔18〕同〔11〕,202页。

〔19〕M.Johnson:《艺术与科学思维》,傅尚逵等译,131页,工人出版社,1988。

〔20〕同〔8〕,481页。

天文学课程论文最新(10篇)

天文学课程论文最新第10篇(全文6874字)

摘要:天文学是一门最古老的科学,他一开始就和人类的劳动和生存密切相关。他同数学、物理、化学、生物、地学同为六大基础学科。大地天文学也是由来已久,从公元前开始到现在,从用传统的方法到现在的各种精密的测量仪器,经历了翻天覆地的变化。本文主要从大地天文学的基础概念入手,主要利用大地天文学只是来测定经纬度和其他,从而确定地面点的位置。基础知识主要有天球上基本的概念,天球与地球的关系以及天球与地球坐标系的关系与转换,运用这些关系,确定的一些大地天文学的测量方法和在各种方面的应用。

关键字:大地天文学,天球坐标系,坐标系转换,测量方法与应用

Abstract:astronomyisaoneoftheoldestscience,hestartedandiscloselyrelatedtotheministryofLabourandsurvivalofhumanbeings.Hewithmathematics,physics,chemistry,biology,studyasthesixbasicsubjects.Astronomyearthalsohasalonghistory,fromthebeginningtonow,fromthetraditionalwaytothepresentallkindsofprecisionmeasuringinstruments,undergoneearth-shakingchanges.Thisarticlemainlyfromthebasicconceptoftheastronomy,themainuseofthelandofastronomyistodeterminethelatitudeandlongitudeandtheother,todeterminethepositionofthegroundpoints.Basicknowledgeismainlyonthebasicconcept,thecelestialspherecelestialsrelationshipwiththeearthandtherelationshipbetweenthecelestialcoordinatesystemwithearthandtransformation,usingtheserelationships,determinesomeoftheastronomymeasurementonthemethodsandapplicationsinvariousaspects.

Keywords:theastronomy,celestialcoordinate,coordinatetransformation,measuringmethodandapplication

目录

摘要。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。1

一、大地天文学基本概念。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。1

二、大地天文学的发展概况。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。1

三、天球的基本概念。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。2

3.1天球的定义。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。2

3.2天球的分类。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.2

3.3天球的两个特性。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。2

3.4关于天球的基本知识。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.2

四、天球与地球的相关关系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。3

4.1天球上与地球公转有关的圈、线、点。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.3

4.2天球上与地球自转有关的圈、线、点。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.5

五、天球坐标系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.6

5.1天球坐标系分类。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.6

5.1.1地平天球坐标系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。7

5.1.2时角天球坐标系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。8

5.1.3赤道天球坐标系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。9

5.1.4黄道天球坐标系:。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。9

5.2天球坐标系之间的转换。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.9

5.2.1天文坐标与天球坐标之间的关系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。10

5.2.2地平坐标与时角坐标之间的关系。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。10

5.2.3天球直角坐标系及其转换。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。11

六、大地天文学的方法及应用。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。13

参考文献。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.。.15

大地天文学

一、大地天文学基本概念大地天文学是天文学的一个分支,也是大地测量的一个重要组成部分。它的重要任务,是用天文方法观测天体的位置来确定地面点在地球上的位置(经纬度)和某一方向的方位角,以供大地测量和其他有关的科学技术部门使用。这是天体测量学与大地天文学的边缘学科,在测站(通常称为天文点)使用天体测量仪器观测天体以测定天文经度和纬度,也可测定测站至相邻固定目标的方位角从而确定测站的子午线。

大地天文学的传统课题包括:①测定地面点的天文经度,就是在同一瞬间测定地面上一点与本初子午线上的地方时之差。该点上的时刻可使用经纬仪、中星仪、棱镜等高仪以及照相天顶筒等仪器测定;本初子午线上的地方时则可通过收录无线电时号求得。②测定地面点的天文纬度。这等同于测定地面点的天极高度。该点的纬度可使用带有纬度水准的经纬仪、天顶仪、棱镜等高仪以及照相天顶筒等仪器测定。③地面目标方位角的测定。这等同于确定某天文点的子午线方向。观测恒星,测定其时角,算出它的方位角,然后测定该瞬间恒星与地面目标之间的水平角,从而得到目标的方位角。这些任务都包含对各种误差的分析及对削弱和消除误差的研究。近代已能测定地面点在以地心为原点的三维直角坐标系中的地心直角坐标,用诸如甚长基线干涉测量、激光测距、全球定位系统测量等技术,精度可达几厘米量级。

二、大地天文学的发展概况

大地天文学是天文学中发展最早的一个分支。公元前3世纪,古希腊天文学家用观测夏至日正午太阳高度的方法测定了子午线的长度。公元8世纪,中国天文学家一行(本名张遂,683~727)等通过观测北极星高度推算出了子午线1°的弧长。元代天文学家郭守敬(1231~1316)组织过全国范围的纬度测量。然而,直到17世纪光学望远镜、测微器与天文钟问世以后,才形成精密的大地天文学。现代大地天文学的测量设备包括天文观测仪器、守时仪器、记时仪器和无线电接收机。天文观测仪器主要是全能经纬仪,也可用中星仪和棱镜等高仪等。守时仪器已全部采用石英钟。记时仪器用以记录观测恒星的时刻。无线电接收机则用

以收录时号。为提高观测精度和效率,各国都在研制新的观测仪器,例如美国的自动天文定位系统、方位角监测仪,意大利的天顶摄影机等。

三、天球的基本概念

3.1天球的定义

各个天体同地球上的观测者的距离都不相同。天体和观察者间的距离与观测者随地球在空间移动的距离相比要大得多,人的肉眼分辨不出天体的远近,所以看上去天体似乎都离我们一样远,仿佛散布在以观测者为中心的一个圆球的球面上(站心天球)。实际上我们看到的是天体在这个巨大的圆球的球面上的投影位置,这个圆球就称为天球。

3.2天球的分类

文学上就将以空间某一点为中心,以无限大为半径,内表面分布着各种各样天体的球面称为天球。天球是研究天体的位置和运动而引进的一个半径为无限大的假想圆球,想象中所有天体都附着在天球表面上。根据所选取的天球中心不同,有站心天球、日心天球、地心天球等。

3.3天球的两个特性

由于天球的半径可视为无穷大,在空间任何有限的距离与天球半径相比,都微小到可以忽略不计。因此天球具有下面两个特性:

1)相距有限距离的所有平行直线,向同一方向延长与天球交于一点。

2)相距有限距离的所有平行平面天球交于同一大圆。

3.4关于天球的基本知识

观测者所能直接辨别的只是天体的方向。在球面上处理点和弧段的关系,比在空间处理视线方向间的角度要简便得多,在天文学的一些应用中,都用天体投影在天球上的点和点之间的大圆弧段来表示它们之间的位置关系。天球的半径是任意选定的,可以当作数学上的无穷大。

我们站在地球上仰望星空,看到天上的星星好像都离我们一样远。星星就好

像镶嵌在一个圆形天幕上的宝石。实际上星星和我们的距离有远有近,我们看到的是它们在这个巨大的圆球球面上的投影,这个假想的圆球就称为天球,它的半径是无限大。而地球就悬挂在这个天球中央。星星在天空中移动的方向并不是杂乱无章的,而且星座的形状并不会改变。星星从东方的地平线爬上来,爬到最高点(中天),然后往西方沉下去。看起来就像整个天球围绕着地球旋转一样。相信大家都明白,地球并不是宇宙的中心,星体并不会绕着地球转。星体在天空中绕着我们旋转,是因为地球自转而产生的错觉,天球本身是不会移动的。我们身在地球中,并不会感觉自己在转动的,就好像们乘坐火车时看见窗外的景物向后移动,而并不感觉到自己在移动中。

天球是一个直观的假象球,其形成的原因是人的肉眼分辨不出天体的远近。设在地球中心照准空间远近不等的天体,将各天体方向线延长与天球相交的各投影点称为各天体在天球上的位置。显然,就存在有两个或多个天体在天球上的投影位置是重合的。

四、天球与地球的相关关系

4.1天球上与地球公转有关的圈、线、点

黄道在天球上的位置较难确定。所谓黄道是指地球绕着太阳运行的公转轨道平面无限扩大与天球相交截出的大圆,它也是地球公转轨道在天球上的投影。地球每年绕太阳运行一周,但在地球上的人们看来,却好像是太阳在天空众星之间绕地球转圈。因此,黄道也就是太阳每年在天球上所作视运动的路线。

黄道面是地球绕太阳系质心运动的平均轨道平面,将这一平面延伸与天球相交的大圈称为黄道;过天球中心作一条直线垂直与黄道面,这条直线与天球相交于K和K′两点,靠近北天极的K点称为北黄极,靠近南天极的K′点称为南黄极。黄道面与赤道面的夹角称为黄赤交角,一般用ε来表示,其值约为23.5。天球上距离黄道90°的两点,即黄道轴与天球相交的两点,称黄极。靠近北天极的一点叫北黄极(通常用K表示),靠近南天极的一点叫南黄极(通常用K′表示)。

二分点和二至点:天球上黄道与赤道相交于和两点,称为二分点,即春分点

和秋分点。在黄道上距春分点和秋分点90的两个点称为二至点,即夏至点和冬至点,其中在赤道以北(最北)的那一点称为夏至点。在赤道以南(最南)的那一点称为冬至点。

二分圈和二至圈:在天球上通过天极、春分点和秋分点的大圈,称为二分圈。在天球上通过天极、夏至点和冬至点的大圈,称为二至圈。

4.2天球上与地球自转有关的圈、线、点,我们要经常用到的基本圈、线、点为:

天轴和天极:通过天球中心(这里为测站点)而与地球瞬时自转轴pp′相平行的直线PP′称为天轴,它与天球相交的两点P和P′称为天极。相应地球北极p的一点P称为北天极,相应地球南极p′的一点P′称为南天极。

天顶和天底:测站的瞬时铅垂线ZZ′与天球相交于Z和Z′两点,在观测者头顶上方的Z点称为天顶,与天顶相对的Z′点称为天底。

天球地平面和天球地平圈:通过天球中心而垂直于测站瞬时铅垂线ZZ′的平面ESWN称为天球地平面,它与天球相交的大圈称为天球地平圈。

天球上的主要圈、线、点

天球赤道面和天球赤道:通过天球中心而与天轴PP′垂直的平面EQWQ′称为天球赤道面(简称赤道面),它与天球相交的大圈EQWQ′称为天球赤道(简称赤道)。其中在天球地平面之上的赤道圈上的点Q称为赤道上点;与赤道上点Q相对应的另一点Q′称为赤道下点。

天球子午面和天球子午圈:由测站铅垂线ZZ′和北天极P所决定的平面PZP′Z′N称为天球子午面(或称天文子午面),它与天球相交的大圈称为天球子午圈(或称天文子午圈)。也可以说通过测站天顶Z和北天极P的大圈即为测站的天文子午圈。其中包含天顶Z和赤道上点Q的半圆PZQSP′称为上子午圈,相对的另一半PNQ′Z′P称为下子午圈。

子午线和四方点:天球子午面与天球地平面垂直,它们的交线NS称为子午线。子午线与天球相交于两点,靠近北天极的那一点N称为北点,和它相对的另一点S称为南点。观测者面向北,在右方地平圈上距南北点各90度的E点称为东点,在左方与东点相对称的一点W称为西点。东南西北四个方向点称为四方点。东西两点也是天球赤道圈与天球地平圈的两个交点。

垂直圈和卯酉圈:通过天顶和天底的任意大圈,例如ZbZ′称为垂直圈。其中过东西点的垂直圈称为卯酉圈。

时圈:通过北天极和南天极或包含天轴的任意大圈,例如PbP′称为时圈。我们在地球上随着地球的自转而不停地绕着地球自转轴由西向东旋转。所以我们相对地看到地球上的日月星辰都像随着天球绕着地球由东向西旋转,每日旋转一周。因而产生天体东升西落的现象。这种直观的由于地球由西向东自转而产生的天球或天体的视运动,称为天球周日视运动或天体周日视运动。

在周日视运动中不变的圈、点为:南北天极、地方性圈、点(如:子午圈、地平圈、天顶、天底、四方点等)。赤道则在赤道面上原位旋转。其他的圈线点则均绕天轴旋转。

五、天球坐标系

5.1天球坐标系分类

为了表示天体在天球上的位置和进行天文测量的需要,需在天球上建立球面坐标系。要建立天球坐标系,须首先确定两个基本要素,如图(5-1)所示:

1)基本平面,由天球上某一选定的大圆所确定。大圆称为基圈,基圈的两个几何极之一作为球面坐标系的极。

2)原点,由天球上某一选定的过坐标系极点的大圆与基圈的交点所确定。天体在天球坐标系中的位置由两个球面坐标标定,如图(5-1)所示:

1)经向坐标,作过该点和坐标系极点的大圆称为副圈(或终圈),从原点到副圈与基圈交点的弧长为经向坐标。

2)纬向坐标,从基圈上起沿终圈到该点的大圆弧长为纬向坐标。天球上任何一点的位置都可以由这两个坐标唯一地确定。这样的球面坐标系是正交坐标系。对于不同的基圈和原点,以及经向坐标所采用的不同量度方式,可以引出不

同的天球坐标系,常用的有地平坐标系、赤道坐标系、黄道坐标系和银道坐标系等。

地平天球坐标系是一种最直观的天球坐标系,和我们日常的天文观测关系最为密切。取测站的地平圈作为基圈(横坐标圈),子午圈作为次圈(纵坐标圈),南点为原点的球面坐标系,称为地平坐标系。它用地平纬度(高度)h或天顶距Z和地平经度(方位角)A来表示天体在天球上的位置。

地平高度h和天顶距z:过天体ζ作一个垂直圈,设它与地平圈相交于A点。

从A点沿垂直圈量至天体ζ的弧距Aζ称为天体的地平高度、或地平纬度、或垂直角,常用h表示。h从地平圈起算,向天顶量为正,向天底量为负,其值由0到±90。

由天顶至天体的弧距离Zζ,或在天体垂直面上的平面角∠ZOζ,称为天体的天顶距,一般以z表示,其取值范围为0到180恒为正。

天顶距与地平高度的关系是:

地平方位角A:通过天体的垂直面与测站的子午面所夹的二面角∠SZA,或在天球地平面上的平面角∠SOA,或大圆弧距SA称为天体的地平经度(方位角),用A表示。

地平方位角的量算方法:由南点S起算,沿地平圈向西量,取值范围为0到360恒为正;或者由南点S起算,分别沿地平圈向东、和向西量,且约定向西量为正,向东量为负,其值由0到±180。

时角坐标系的基圈是赤道,次圈是子午圈,原点是上点Q(即赤道与子午圈的交点);此坐标系用赤纬和时角来表示天体在天球上的位置。

赤纬δ:通过天体ζ作一时圈,设它与赤道交于点T。由T点沿时圈量至天体ζ的弧距Tζ,称为天体的赤纬,以δ表示。

赤纬的量度方法:从赤道起算,沿时圈向北天极量为正,向南天极量为负。其值范围:0到±90。

时角t:通过天体的时圈面与测站的子午面所夹的二面角∠QPT、或大圆弧距QT称为天体的时角,用t表示。

时角的量算方法:由上点Q起算沿赤道向西量,取值范围为:0到360,或0到24小时;或者由上点Q起算,分别沿赤道向东西量,由0到±180,或0到±12小时,且约定向西量为正,向东量为负。

赤纬与周日视运动、测站无关,时角与周日视运动、测站有关有。测量时必须说明时刻。否则毫无意义。

5.1.3赤道天球坐标系

赤道坐标系的基圈是赤道,次圈是过春分点的极分圈,原点为春分点γ。此坐标系用赤纬δ和赤经α来表示天体在天球上的位置。

赤纬δ:同时角坐标系。

赤经α:过春分点作一极分圈(即过春分点的时圈),并通过天体ζ作一时圈,设它与赤道交于T点。则天体ζ的时圈面与极分圈面

所夹的二面角∠γPT,或大圆弧距γT称为天体的赤经,以α表示。

赤经的量度方法:从春分点γ起算,沿赤道按反时针方向(即与周日视运动相反的方向)计量,0到24小时。

5.1.4黄道天球坐标系:

黄道坐标系的基圈是黄道,次圈为过春分点和黄极黄经圈,原点为春分点γ;它用黄纬β和黄经l来表示天体在天球上的位置。

黄纬β:通过天体ζ作一黄经圈,设它与黄道交于R点。由R点沿黄经圈量至天体ζ的弧距Rζ称为天体的黄纬,以β表示。

黄纬的度量方法:从黄道起算,沿黄经圈向北黄极量为正,向南黄极量为负。其值:0到±90。

黄经λ:过春分点作一黄经圈(即过春分点和黄极的大圈),则天体ζ的黄经圈面与过春分点的黄经圈面所夹的二面角∠γKR,或大圆弧距γR称为天体的黄经,以λ或l表示。

黄经的量度方法:从春分点γ起算,沿黄道按反时针方向计量,0到±360。

5.2天球坐标系之间的转换

天球坐标系是天文学中描述天空中物体位置的坐标系。类似于我们在地球表面上用到的地理坐标系。天球坐标系随着投影到天球上的坐标格网的不同而不同,沿着大圆将天空分成两个相等的半球的平面称为基础平面,而这种坐标系仅

仅会因为基本面的不同而不同。每个坐标系的名字是根据基本面的选择而定的。

5.2.1天文坐标与天球坐标之间的关系

测站的天文纬度定义为测站的瞬时铅垂线与地球赤道面之间的夹角;测站的地球天文子午面定义为测站的瞬时铅垂线和地球瞬时北极所决定的平面;而测站的天文经度定义为格林尼治天文台的地球天文子午面与测站的地球天文子午面之间的二面角。另外,测站的地球天文子午面投影到天球上就是测站的天球子午面,而地球赤道面与天球赤道面平行(或在天球上重合)。

天球坐标与天文坐标间存在两个重要关系:

1)测站的天文纬度等于北天极的地平高度,也等于测站天顶的赤纬,即:

Φ=z+δ=δz

2)地面A、B两地同时观测同一天体的时角之差(tA-tB),等于A、B两地的天文经度之差(λA-λB),即:

A-λB=tA-tB

显然,若测站与各林尼治天文台同步观测一天体,则有λA–λG=tA–tG,但λG=0,故有:λA=tA–tG

由此可知,地面上任意一测站的天文经度,等于测站与各林尼治天文台在同一瞬间观测同一天体的时角之差。

5.2.2地平坐标与时角坐标之间的关系

由天顶Z、北天极P和天体ζ为顶点构成的球面三角形称为定位三角形(也称天文三角形),局部图见图(5-5)。

在此定位三角形中,各边、角的数值如下:

=900–δ,

而∠PζZ=q一般称为星位角。

根据球面三角形的边余弦公式可得:

根据正弦公式可得:

根据五元素公式可得:

及关系式:

因此,天体的地平坐标z、A和时角坐标t、δ与测站的天文坐标φ存在以上关系。=900–φ,=z∠ζPZ=t,∠ζZP=1800-A

5.2.3天球直角坐标系及其转换

地平直角坐标系:坐标原点在天球中心,Z轴指向天顶Z,X轴指向地平坐标系的原点—南点S,由于地平方位角是由南点顺时针量起(从Z轴往下看),因此Y轴应该在X轴的右侧指向西点W。地平直角坐标系形成左手系。天体的直角坐标与其地平坐标的关系为:

时角直角坐标系:坐标原点在天球中心,Z轴指向北天极P,X轴指向时角坐标系的原点—赤道上点Q,由于时角是由上点Q顺时针量起(从Z轴往下看),因此Y轴应该也在X轴的右侧指向西点W。时角直角坐标系形成左手系,天体的直角坐标与其时角坐标的关系为:

可见时角直角坐标系与地平直角坐标系有共同的Y轴,两个坐标系X轴或Z轴之间的夹角为测站的天文余纬度,即:900–φ。

赤道直角坐标系:坐标原点在天球中心,Z轴指向北天极P,X轴指向时角坐标系的原点—春分点γ,由于赤经是由春分点γ逆时针量起(从Z轴往下看),因此Y轴应该在X轴的左侧90。赤道直角坐标系形成右手系,天体的直角坐标与其赤道坐标的关系为:

可见赤道直角坐标系与时角直角坐标系有共同的Z轴,两个坐标系X轴或Y轴之间的夹角为春分点的时角tr,即地方恒星时S。

黄道直角坐标系:坐标原点在天球中心,Z轴指向北黄极K,X轴指向黄道坐标系的原点—春分点γ,由于黄经是由春分点γ逆时针量起(从Z轴往下看),因此Y轴应该在X轴的左侧90。黄道直角坐标系形成右手系,天体的直角坐标与其黄道坐标的关系为:

可见黄道直角坐标系与赤道直角坐标系有共同的X轴,两个坐标系Z轴或Y轴之间的夹角为黄赤交角ε。

根据前面讲述的坐标旋转矩阵方法,可导出天球坐标系之间的转换关系式。时角直角坐标与地平直角坐标之间的关系:

赤道直角坐标与时角直角坐标之间的关系:

黄道直角坐标与赤道直角坐标之间的关系:

可见只要知道测站的瞬时天文纬度φ和观测瞬间的地方真恒星时s,就可将观测天体的地平坐标h和A转换成赤道坐标α和δ,反之亦然。

六、大地天文学的方法及应用

大地天文学的主要任务是研究精确测定天文点的天文经纬度、方位角以及地方恒星时的理论和方法。已实现天文定位的地面点叫天文点。定位方法都是在测出某些天体的某些量(如天顶距z、高度h、方位角A或天体通过特定平面的时刻T)后求解天文三角形。测定纬度的方法常用天顶距差法(或称太尔各特法)和等高法。无线电时号法与中天法专门用于测定经度。多星等高法则可同时测定经度与纬度。恒星时角法用于测定方位角。这些测定法在军事上得到广泛应用。军用地图的编绘、火炮射击目标的迅速定位和导弹等武器发射的准确性等,都需要用到它们。大地网的定向、测角的验核、部队战斗队形各要素的大地联测和部队战斗行动的测绘保障等工作,也都离不开天文定位资料。工程建设、海洋开发、国土整治、科学研究、军事测绘都需要进行大地网的布设。天文经纬度与大地测量结果相比对,可获得点位的垂线偏差,这是研究地球形状和大地水准面结构的必要参数。测量天文方位角可确定地面子午线的方向。天文方位角还可用以推算大

地方位角,从而控制大地网中的累积误差。大地天文学的测量精度通常在0.5″以下,固定的天文仪器则可达0.05″左右。在保障军事行动的近似测量中,也可使用中、低精度的经纬仪,天文钟则可用精密秒表代替。

参考文献

[1]苏宜编著。天文学新概论[M]。华中科技大学出版社,2005

[2]刘学富主编。基础天文学[M]。高等教育出版社,2004

[3]朱慈墭[编著]。天文学教程[M]。高等教育出版社,2003

[4]胡中为编著。普通天文学[M]。南京大学出版社,2003

[5](法)G.伏古勒尔著,李珩译。天文学简史[M]。广西师范大学出版社,2003

[6]余明主编。简明天文学教程[M]。科学出版社,2001

[7]刘林著。航天器轨道理论[M]。国防工业出版社,2000

[8]黄润乾著。恒星物理[M]。科学出版社,1998