五年级上册数学教案(5篇)

时间:2023-08-02 23:29:01关键词:上册,数学教案

五年级上册数学教案第1篇全文(684字)

教学目标:

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

教学重点:

除数是整数,商是小数的小数除法的计算方法。

教学难点:

除得的结果有余数,补“0”继续除。

教学过程:

一、复习导入

课件出示情境主题图

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷6 24÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个 共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6 个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就 是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=418 10÷25 =4 1.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

32÷8 12÷25 2.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

四、课堂总结

本节课你有哪些收获?

五年级上册数学教案(5篇)

五年级上册数学教案第2篇全文(701字)

教学内容:

课本第39页例1、例2.

教学目标:

1、使学生理解第一级运算和第二级运算的含义。

2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。

3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。

4、培养学生认真严格的态度。

教学过程:

一、复习铺垫

(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)

(2)填空回答。

①在一个算式里,如果只有()或者只有(),要从左往右依次计算。

②在一个算式里,如果有(),又有(),要先做()后做()。

(3)在一个算式里,如果有括号,要先算()。

二、新授

1、出示课题:整数、小数四则混合运算。

2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。

3、教学例1.

(1)板书例1:3.7-2.5+4.63.6×6÷0.9

然后设问

①这些算式里有哪些运算?

在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

②这两个算式的运算顺序怎样?

③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。

根据学生回答,改变复习填空①的叙述。

④再概括一点讲,这句话可以怎样叙述?

根据学生回答,改变复习填空①的叙述,出示教材结语。

(2)学生完成例1的计算。

4、教学例2.

(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问

①算式里含有几级运算?

②运算顺序怎样?

根据学生回答,改变复习填空②的叙述,出示教材结语。

(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)

(3)完成例2下面的“做一做”习题。

5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。

三、巩固练习。

1、(1)填空。(出示,学生口答)

①加、减、乘、除四则运算统称为()。

②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。

③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。

2、课本第39页做一做。

四、作业。

练习十第1、4题。

五年级上册数学教案(5篇)

五年级上册数学教案第3篇全文(760字)

教学目标

一、知识与技能

1.认识正方体,掌握正方体的特征。

2.理解长方体与正方体的联系与区别。

3.发展空间观念。

二、过程与方法

经历观察实物和动手操作等活动,掌握正方体的特征。

三、情感态度与价值观

体验合作探究的乐趣,感受数学与生活的联系,培养学生的创新意识。

教学重点掌握正方体的特征。

教学难点理解长方体和正方体的关系。

教学准备正方体纸盒、长方体和正方体对比教具、多媒体课件。

课时安排1课时。

教学过程

一、复习导入

1.回忆长方体的特征,请学生用语言进行描述。

2.操作:同桌交流,分别说出长方体的棱有几条?可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

师:今天这节课,我们继续学习一种特殊的立体图形。

二、新课讲授

1.探索正方体的特征。

学生拿出准备好的正方体纸盒,观察并思考。

师:这些都叫什么立体图形?

生:都是正方体。

师:要探究正方体具有什么特征,我们应该从哪方面去思考?

生:从面、棱、顶点这三个方面

2.合作学习。

学生根据手中的正方体学具,小组合作探究。

3.集体交流。

(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。

(2)组:正方体有12条棱,正方体的12条棱的长度相等。

(3)组:正方体有8个顶点。

请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。

师:怎样判断一个图形是不是正方体?

4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体?

学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。

三、课堂作业

1.教材第20页的“做一做”。

2.教材第21~22练习五的第4、5、8、9题。

四、课堂小结

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)

五年级上册数学教案(5篇)

五年级上册数学教案第4篇全文(860字)

教学目标

1、知识与技能

理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

2、过程与方法

经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

3、情感态度与价值观

感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

教学重难点

【教学重点】

3的倍数特征。

【教学难点】

探究3的倍数特征的过程。教学过程

教学过程

一、以旧引新,竞赛导入

1、请说出2的倍数的特征、5的倍数的特征。

2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

35 158 200 87 65 164 4122

既是2的倍数又是5的倍数的数有什么特征?

3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

二、猜想探索,归纳验证

1、大胆猜想:猜一猜3的倍数有什么特征?

(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

2、观察探索:出示第10页表格。

(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

(4)问题启发:

大家再仔细看一看,3的倍数在表中排列有什么规律?

从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

4、验证结论

大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

(1)尝试验证。(生写数,然后判断、交流、得出结论。)

(2)集体交流。

教师说一个数。如342,学生先用特征判断,再用计算器检验。

一个更大的数。4870599,学生先用特征判断,再用计算器检验。

5、巩固提高。

五年级上册数学教案第5篇全文(1229字)

一、学情分析:

《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。

二、教学目标:

1、理解质数和合数的概念。

2、能熟练判断质数与合数,能够找出100以内的质数。

3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

三、教学重难点:

重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

难点:能运用一定的方法,从不同的角度判断、感悟质数合数。

四、教学过程:

(一)导入新课。找出1~20各数的因数。

你发现了什么?

(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)

今天我们学习的内容就与一个数因数的个数有关。

[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]

(二)新授

探究一:认识质数和合数

师:请同学们按照因数的个数,将这些数分分类。

(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)

师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。

师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?

(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)

师:1是质数吗?

(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)

师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?

(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)

师:1是合数吗?

(学生可能回答:1不是合数,它只有1个因数1。)

小结:1不是质数,也不是合数。

师:你还能找出其他的质数和合数吗?

(学生举例并说明理由)

[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]

探究二:找出100以内的质数,做一个质数表。(课本P14例1。)

(媒体出示图表)

师:你有什么好方法?

(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)

师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?

(学生可能回答:50的倍数,51的2倍是102,超过100了。)

(学生制作100以内的质数表。)

[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]

五、练习

(课本P16∕练习四第一、二题。)

六、小结:

1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。

3、1不是质数,也不是合数。