北师大五年级数学教案(5篇)

时间:2023-07-31 05:29:03关键词:北师大,数学教案

北师大五年级数学教案第1篇全文(387字)

教学内容:

教材第29~30页“分数除法(三)”。

教学目标:

1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

2.在解方程中,巩固分数除法的计算方法。

教学重难点:

1.能够体会方程是解决实际问题的重要模型。

2.能够用方程解决实际问题。

教学过程:

一、创设情景激趣揭题

1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

2.引入并板书课题。

二、扶放结合探究新知

1.根据这些数学信息,你能提出哪些数学问题?

2.引导学生逐一解答提出的问题。

3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

4.引导观察,找出有什么相同点和不同点?

三、反馈矫正落实双基

1.指导完成P29的试一试的1,2题。

2.你能根据方程

X×1/5=30

编一道应用题吗?

3.请你想一个问题情景,遍一道分数应用题。

四、小结评价布置预习

1.引导小结

通过本节课的学习你有哪些收获?

2.布置预习

整理前面所学知识。

板书设计:

分数除法(三)

跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

参加活动总人数×2/9=跳绳的人数

解:设操场有X人参加活动。

北师大五年级数学教案(5篇)

北师大五年级数学教案第2篇全文(684字)

教学目标:

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

教学重点:

除数是整数,商是小数的小数除法的计算方法。

教学难点:

除得的结果有余数,补“0”继续除。

教学过程:

一、复习导入

课件出示情境主题图

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷6 24÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个 共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6 个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就 是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=418 10÷25 =4 1.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

32÷8 12÷25 2.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

四、课堂总结

本节课你有哪些收获?

北师大五年级数学教案(5篇)

北师大五年级数学教案第3篇全文(824字)

教学内容:

教材19页内容,能被3整除的数的特征。

教学要求

使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。

教学重点:能被3整除的数的特征。

教学难点:会判断一个数能否被3整除

教学方法:

三疑三探教学模式

教具学具:

课件等。

教学过程

一、设疑自探(10分钟)

(一)基本练习

1、能被2、5整除的数有什么特征?

2、能同时被2 和5整除的数有什么特征?

(二)揭示课题

我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)

(三)让学生根据课题提问题。

教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)

(四)出示自探提示,组织学生自探。

自探提示:

自学课本19页内容,思考以下问题:

1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。

2、能被2、3整除的数有什么特征?

3、能被2、3、5整除的数有什么特征?

二、解疑合探(15分钟)

1、检查自探效果。

按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。

2、着重强调;

一个数各个数位上的数字之和能被3整除,这个数就能被3整除。

三、质疑再探(4分钟)

1、学生质疑。

教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?

2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

四、运用拓展(11分钟)

(一)学生自编习题。

1、让学生根据本节所学知识,编一道习题。

2、展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

1、判断下列各数能不能被3整除,为什么?

72 5679 518 90 1111 20373

2、58 115 207 210 45 1008

有因数3的数:( )

有因数2和3的数:( )

有因数3和5的数:( )

有因数2、3和5的数:( )

让学生说说怎么找的。

(三)全课总结。

1、学生谈学习收获。

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2、教师归纳总结。

学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

板书设计:

能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,

这个数就能被3整除。

北师大五年级数学教案(5篇)

北师大五年级数学教案第4篇全文(1229字)

一、学情分析:

《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。

二、教学目标:

1、理解质数和合数的概念。

2、能熟练判断质数与合数,能够找出100以内的质数。

3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

三、教学重难点:

重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

难点:能运用一定的方法,从不同的角度判断、感悟质数合数。

四、教学过程:

(一)导入新课。找出1~20各数的因数。

你发现了什么?

(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)

今天我们学习的内容就与一个数因数的个数有关。

[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]

(二)新授

探究一:认识质数和合数

师:请同学们按照因数的个数,将这些数分分类。

(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)

师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。

师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?

(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)

师:1是质数吗?

(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)

师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?

(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)

师:1是合数吗?

(学生可能回答:1不是合数,它只有1个因数1。)

小结:1不是质数,也不是合数。

师:你还能找出其他的质数和合数吗?

(学生举例并说明理由)

[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]

探究二:找出100以内的质数,做一个质数表。(课本P14例1。)

(媒体出示图表)

师:你有什么好方法?

(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)

师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?

(学生可能回答:50的倍数,51的2倍是102,超过100了。)

(学生制作100以内的质数表。)

[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]

五、练习

(课本P16∕练习四第一、二题。)

六、小结:

1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。

2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。

3、1不是质数,也不是合数。

北师大五年级数学教案第5篇全文(1302字)

一、学习目标

(一)学习内容

“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。

(二)核心能力

能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。

(三)学习目标

1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。

2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。

(四)学习重点

掌握正方体的特征,理解长方体和正方体的关系。

(五)学习难点

建立空间观念,形成立体图形的初步印象。

(六)配套资源

实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。

二、学习设计

(一)课前设计

(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。

(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?

(二)课堂设计

1.谈话导入

师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?

师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。

【设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】

2.问题探究

(1)观察模型,探究特征

师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?

(面、棱、顶点,长宽高)

师:对于正方体,你们准备从几方面来认识?

生自由发言。

师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?

同桌合作,自主探求正方体的特征。

交流汇报。(汇报时重在交流探究的过程和方法)

预设:

①正方体有6个面,每个面都是正方形并且6个面都相等;

②正方体有12条棱,每条棱都相等;

③正方体有8个顶点。

小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。

(2)制作模型,加深认识特征

师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。

用剪好的书本第123页的正方体展开图做一个正方体。

展示学生作品分享制作感想。

【设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】

(3)对比观察,探究长方体和正方体的关系

师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。

交流汇报后,教师用表格的形式进行整理。

引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。

3.巩固练习

(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。

①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。

②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。

③搭一个四个面是正方形的长方体,其余两个面有什么特点

4.课堂总结

师:通过这节课的学习,你有什么收获?

小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。